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1 Introduction 

 
Slope stability has been studied by many methods, e.g. limit equilibrium methods such as 

Fellenius’ ordinary method [1] and Bishop’s simplified method [2] are used commonly for their 

simplicity and acceptable accuracy in practice. Later, heuristic methods are utilized to find the 

minimum factor of safety which is formulated as the objective function of variables expressing the 

radius and center coordinates of the slip circle. For instance, the use of genetic algorithms in [3, 4], ant 

colony optimization in [5], particle swarm optimization in [6, 7], and differential evolution in [7]. 

Normally, the slope stability is evaluated for a given data of the embankment and soil through a 

process of analysis using limit equilibrium methods (or other methods) and searching to find the critical 

slip surface. Recently, with the assistance of the artificial neural network (ANN), one can predict the 

slope stability via the trained ANN without searching directly for the critical slip surface and its 

corresponding factor of safety, e.g. using ANN for slopes in homogeneous soil [8], or in two-layer 

purely cohesive soil slopes [9]. Later, other machine learning methods are also used for slope stability, 

e.g. the support vector machine and its version with the stability status that has been modeled as a 

classification problem [10, 11] 

However, the above studies only surveyed small data on slope configurations, and most of the 

data are for slopes with homogeneous soil. This study will extend the application of ANN for both one-

layer and two-layer soil slopes with a variety of slope configurations and soil parameters. The next 

parts of the article are structured as follows. Section 2 describes briefly a few limit equilibrium methods 

in the assessment of slope stability. Section 3 introduces differential evolution as an optimization 

technique for finding the critical slip surface. Section 4 describes briefly the artificial neural network 

and the model used in this study. Section 5 formulates the problem of searching for the critical slip 

surface and data preparation for ANN performance. Then sections 6 and 7 are for results and 

conclusions, respectively. 
 
 
 
 

Abstract 
 
This study aims for two purposes: firstly, using the Differential 
Evolution method combined with limit equilibrium methods to find the 
factor of safety of a variety of different configurations of slopes and 
soil parameters. Two patterns of the embankments are assessed, a 
one-layer soil pattern with 540 cases and a two-layer soil pattern with 
24300 cases. Secondly, using these data to train and test an artificial 
neural network for predicting the factor of safety of slopes. The 
experimental data and values predicted by the artificial neural network 
correlate well with a linear coefficient of correlation of around 0.99. 
Given large enough training data, the proposed approach shows its 
reliability in quick evaluation of the slope stability without a long 
process of searching for a critical slip surface.  
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2 Assessment of slope stability using limit equilibrium methods 
 

This study uses two common limit equilibrium methods (LEM), namely Fellenius’ ordinary 

method [1] and Bishop’s simplified method [2]. These methods assume a circular slip surface and the 

corresponding factor of safety FS is evaluated by calculation forces acted on slices of the slip area. 

For simplicity, Fellenius’ ordinary method neglects interaction forces E and T between sides of the 

slide, Fig. 1, while Bishop’s simplified method neglects only the interaction force T. Factor of safety FS 

are given in equation (1) for Fellenius’ ordinary method and equation (2) for the Bishop’s simplified 

method: 
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where: 

n - number of slices, 

n - number of slices, 

li  - the length of the ith slice base,,  

ci - the stress cohesion of the ith slice,  

φi - the angle of internal friction of the ith slice,  

Wi - the weight of the ith slice,  

i - the angle between the normal force on the base of the ith slice and the vertical direction. 
 

 
Fig. 1:  Forces acting on slices of a circular slip surface. 

 
3 Differential evolution 
 

Differential evolution (DE) is a population-based algorithm [12] that uses mutation, crossover, 

and selection operators to self-adjust the search direction during finding the best solution. For a 

minimization problem, these operators are defined as follows. 

 Mutation 
vi,G+1 = xr1,G + FM(xr2,G – xr3,G) , I = 1, 2,...Npop,                                                             (3a) 
 
or 
 
vi,G+1 = xbest,G + FM(xr1,G + xr2,G – xr3,G – xr4,G) , I = 1, 2,...Npop,                                            (3b) 
 

where, G is the current generation; Npop is the population size, vi,G+1 is a mutant vector; xbest,G is the 

best vector; r1, r2, r3, r4 are random integer numbers, mutually different in [1, Npop] and different from 

the running index I; FM is the mutation constant in (0, 2);  

 Crossover 
 

ui,G+1  = (u1i,G+1, u2i,G+1,…, uDi,G+1),                                                                    (4) 
 
with 
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where, r is a random number in (0, 1), CR is the crossover constant in [0, 1], D is the dimension of the 
problem, and k is a random integer number in [1, D]. 

 Selection  
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where f is the objective function.  

The algorithm initially starts with a random population, then uses these operators for searching 

the “optimal” solution. The search stops when it satisfies a given stopping criterion, i.e. number of 

iterations or convergence criteria. An illustration of a minimization problem using differential evolution 

is given in Fig. 2. 
 

 
Fig. 2: Differential evolution algorithm for a minimization problem. 

 
4 Artificial neural network  
 

The artificial neural network is an algorithm that tries to mimic the human brain. Its original ideas 

started in the 1940s and becomes popular in the 1980s with the main representative being the 

multilayer perceptron model trained by the backpropagation learning algorithm [13]. The ANN 

architecture in this study, shown in Fig. 3, consists of an input layer, hidden layer(s) and an output 

layer. Each layer consists of neurons (or nodes). A bias node with a value of 1 is added to each layer 

to shift the activation function. Connections between neurons in layers are expressed as weights 

which are determined by a training process. In this study, the sigmoid activation function (as eq. 6) is 
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applied to transfer the values between neurons of layers, and the gradient descent method is adopted 

in the backpropagation learning algorithm. 

The number of neurons in the input layer depends on the embankment pattern. It consists of 5 

neurons represented for h, m, 1, c1, and 1 for one-layer soil cases, and 8 neurons represented for h, 

m, 1, c1, 1, 2, c2, and 2 for two-layer soil cases. The output layer is a single neuron estimating the 

factor of safety (FS) of the slope. The reasonable number of hidden layers and neurons in each 

hidden layer will be determined by experiments regarding the balance between the result quality and 

the running time. After trials with different scenarios, this study uses one hidden layer with 5 neurons 

for the one-layer soil pattern, and two hidden layers with 5 neurons in each layer for the two-layer soil 

pattern. Similarly, the learning rate in the gradient descent method is chosen as 0.01 for one-layer soil 

cases and 0.001 for two-layer soil cases.  

The training and testing samples are 80 % and 20 % of the total data of each case, respectively. 

The training process is iterated to minimize the mean squared error between the predicting outputs 

and the target values (actual values). The maximum epoch is set to 300000. Initial weights with a 

mean of zero are chosen randomly within the range [-1, 1]. Details of these parameters are listed in 

Table 1. 
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Fig. 3: ANN architecture in this study. 

 
Table 1: Parameters of the ANN models. 

Parameters One-layer soil Two-layer soil 

Number of input nodes 5 8 

Number of hidden layers 1 2 

Number of hidden nodes 5 5 for each hidden layer 

Number of output nodes 1 1 

Activation function Sigmoid function 
x

e

x









1

1
)(  

Optimizer Gradient descent method 

Maximum iteration 300000 

Learning rate 0.01 0.001 

 
5 Problem formulation 
 
5.1 Searching for the critical slip surface 
 

For a given configuration of an embankment, the critical slip surface gives the minimum safety 

factor of the slope. The critical slip surface is assumed as a circle in limit equilibrium methods. It is 
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defined by three parameters, namely the center coordinates (x, y) and radius r of the circle, which are 

the solution to the problem formulated as follows: 

 Minimize FS = Factor of safety of the slope calculated by the equation (1) or (2). 

 Subject to - Kinematic constraints to ensure a reasonable trial circular slip. 

                                 - Bounds of three design variables. 
 

xmin  x  xmax,  ymin  y  ymax,  rmin  r  rmax, 
 
where: x, y, and r are the center coordinates and radius of the circular slip surface, (xmin, ymin), (xmax, 
ymax) are the bottom left and the top right corners of a rectangle predicted to contain the center of 
circular slip surfaces, (rmin, rmax) ensures the radius of slip circles is within a reasonable limit.  

The differential evolution algorithm showed its ability in searching for the optimal solution to 

this problem [7]. Therefore, we will choose similar parameters of DE in this study, i.e. the population 

Npop = 30, number of iterations Iter = 50, the mutation constant FM = 0.5, and the crossover constant 

CR = 1.0.  

 
5.2 Data preparation for ANN 
 

For effective training and testing of the ANN, we need to prepare large enough data of critical 

surfaces in a variety of embankment configurations. In this study, we choose two patterns of the 

embankments, one with a one-layer soil, Fig. 4a, and one with a two-layer soil, Fig. 4b. Parameters 

include slope height h, slope ratio m, unit weight , cohesion c, and internal friction angle . For 

simplicity, the pore pressure ratio is assumed zero in this study. The bounds and increment of 

parameters are detailed in Table 2, e.g. the slope height h is from 3 m to 6 m with an increment of 1 

m, the slope ratio m varies from 1 to 2 with an increment of 0.5, and similarly for other parameters. 

Consequently, the total number of assessments of the slope stability used as data for ANN is 540 for 

the one-layer soil and 24300 for the two-layer soil.  

The study has assessed the safety factor of all the above slope configurations. For each case, 

the factor of safety and the corresponding circular slip surface are recorded in a database. From the 

assessment, ranges of the factor of safety by Fellenius’ and Bishop’s methods for the two patterns are 

summarized in Table 2. Examples of some results of slope stability used as training and testing data 

are given in Table 3. 

As a large variance among ranges of the input parameters, it is necessary a data pre-

processing before the training of ANN.  To prepare good data for the learning algorithm, each input 

parameter is normalized using its standard deviation and the mean as eq. (7). For convenience in 

expressing the results, the output (factor of safety) is also mapped into the range of [0, 1] as eq. (8). 
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where: xn is the normalized value of x,  and  are the mean value and the standard deviation of each 

parameter, respectively; x’ is the mapped value of x, xmin and xmax are the minimum and the maximum 

of the factor, respectively. 
 

  
a) one-layer soil b) two-layer soil 

Fig. 4: Embankment configurations of two slope patterns.  
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Table 2: The slope parameters and factor of safety 

Input parameters and output One-layer soil Two-layer soil 

1. Slope height, h [m] 3, 4, 5, 6 3, 4, 5, 6 

2. Slope ratio, m 1, 1.5, 2 1, 1.5, 2 

3. Unit weight of layer 1, 1  [kN/m3] 17, 18, 19 17, 18, 19 

4. Cohesion of layer 1, c1  [kN/m2] 10, 15, 20 10, 15, 20 

5. Internal friction angle of layer 1, 1  [
o] 12, 15, 18, 21, 24 12, 15, 18, 21, 24 

6. Unit weight of layer 2, 2  [kN/m3] - 16, 17, 18 

7. Cohesion of layer 2, c2  [kN/m2] - 5, 10, 15 

8. Internal friction angle of layer 2, 2  [
o] - 6, 9, 12, 15, 18 

Output: Factor of safety, FS (Fellenius’ method) min = 0.92, max = 3.98 min = 0.69, max = 3.31 

Output: Factor of safety, FS (Bishop’s method) min = 0.97, max = 4.18 min = 0.75, max = 3.59 

Total assessment cases 540 24300 

 
Table 3. Examples of some results of slope stability 

Configuration 
h 

[m] 
m 

1 

[kN/m3] 

c1 

[kN/m2] 
1 

[o] 
2 

[kN/m3] 

c2 

[kN/m2] 
2 

[o] 
FS 

Fel./Bis. 

One-layer soil 

3 1 17 10 12 -- -- -- 1.59/1.81 

4 1 18 15 21 -- -- -- 2.01/2.17 

5 1.5 19 20 15 -- -- -- 2.02/2.10 

6 2 18 10 15 -- -- -- 1.39/1.47 

Two-layer soil 

3 1 17 10 24 16 5 6 1.11/1.17 

4 1 18 15 27 17 10 9 1.47/1.58 

5 1.5 19 10 27 16 15 6 1.28/1.42 

6 2 18 10 36 16 5 12 1.19/1.39 

 
6 Results 
 

For the whole 540 assessment cases of one-layer soil embankment, it can be seen that 

experimental data (target values on the horizontal axis) and values predicted by ANN (on the vertical 

axis) correlate well for both Fellenius’ method in Fig. 5, and Bishop’s method in Fig. 6, with the linear 

coefficient of correlation R, is around 0.99 in both training phase and testing phase. In addition, the 

ANN is applied for each slope height because of its significant effect on slope stability. The ANN 

predictions are also good for each slope height (135 cases for each slope height), with most of the 

correlation R being approximately 0.99 as shown in Fig. 7 for Fellenius’ method and Fig. 8 for Bishop’s 

method. The mean squared errors between the predicting outputs and the target values are very 

small, as given in Table 4. 

For the two-layer soil embankment with a total of 240300 assessment cases, the correlation is 

even better with values of correlation R reaching almost 0.999 for both Fellenius’ method in Fig. 9, and 

Bishop’s method in Fig. 10. This remark is also the same for each wall height (with 60075 cases for 

each wall height) by Fellenius’ method in Fig. 11, and Bishop’s method in Fig. 12. The mean squared 

errors between the predicting outputs and the target values are also very small, as given in Table 5. 
 

Table 4: The mean squared errors (MSE) for the embankments with one-layer soil. 

Assessment case All H = 3 m - 6 m H = 3 m H = 4 m H = 5 m H = 6 m 

Fellenius’ method 
(Training /testing phase) 

0.0027 / 0.0017 0.0014 / 0.0016 0.0010 / 0.0025 0.0025 / 0.0031 0.0003 / 0.0005 

Bishop’s method 
(Training /testing phase) 

0.0035 / 0.0037 0.0020 / 0.0061 0.0034 / 0.0048 0.0011 / 0.0043 0.0017 / 0.0109 

 
Table 5: The mean squared errors (MSE) for the embankments with two-layer soil. 

Assessment case All H = 3 m - 6 m H = 3 m H = 4 m H = 5 m H = 6 m 

Fellenius’ method 
(Training /testing phase) 

0.0007 / 0.0007 0.0005 / 0.0006 0.0004 / 0.0004 0.0003 / 0.0003 0.0003/ 0.0003 

Bishop’s method 
(Training /testing phase) 

0.0008 / 0.0008 0.0006 / 0.0007 0.0005 / 0.0005 0.0004 / 0.0004 0.0003/ 0.0003 
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7 Conclusion 
 

The study assessed the factor of safety of a large number of slope configurations using the 

differential evolution combined with limit equilibrium methods, then use them as a database for ANN 

performance. The ANN architecture, which is a multilayer perceptron model with the sigmoid activation 

function trained by the backpropagation learning algorithm using the gradient descent method, can 

predict very well the factor of safety of slopes in the experiment. The number of hidden layers and 

nodes for each slope pattern are chosen after the trial-and-error process to balance the quality of 

results and the running time. Although the study assessed a considerable number of slope cases, 

there is still a very large number of configurations needed to apply ANN for the prediction of the 

stability of any slope. However, the study showed the reliability of ANN in surveyed range of 

parameters. This can encourage accumulating more results of other slopes to enrich the database 

which makes ANN applicable for use in certain circumstances. 
 

 
a) Training phase 

 
b) Testing phase 

Fig. 5: ANN performance in prediction of factor of safety by Fellenius’ method for one-layer soil 
embankment (for slope height h from 3 m to 6 m). 

 

 
a) Training phase 

 
b) Testing phase 

Fig. 6: ANN performance in prediction of factor of safety by Bishop’s method for one-layer soil 
embankment (for slope height h from 3 m to 6 m). 
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a) h = 3 m, Training phase 

 
b) h = 3 m, Testing phase 

 
c) h = 4 m, Training phase 

 
d) h = 4 m, Testing phase 

 
e) h = 5 m, Training phase 

 
f) h = 5 m, Testing phase 

 
g) h = 6 m, Training phase 

 
h) h = 6 m, Testing phase 

Fig. 7: a) - h) ANN performance in prediction of factor of safety by Fellenius’ method for one-layer soil 
embankment (for each slope height). 
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a) h = 3 m, Training phase 

 
b) h = 3 m, Testing phase 

 
c) h = 4 m, Training phase 

 
d) h = 4 m, Testing phase 

 
e) h = 5 m, Training phase 

 
f) h = 5 m, Testing phase 

 
g) h = 6 m, Training phase 

 
h) h = 6 m, Testing phase 

Fig. 8: a) - h) ANN performance in prediction of factor of safety by Bishop’s method for one-layer soil 
embankment (for each slope height).  
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a) Training phase 

 
b) Testing phase 

Fig. 9: ANN performance in prediction of factor of safety by Fellenius’ method for two-layer soil 
embankment (for slope height h from 3 m to 6 m). 

 

 
a) Training phase 

 
b) Testing phase 

Fig. 10: ANN performance in prediction of factor of safety by Bishop’s method for two-layer soil 
embankment (for slope height h from 3 m to 6 m). 
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a) h = 3 m, Training phase 

 
b) h = 3 m, Testing phase 

 
c) h = 4 m, Training phase 

 
d) h = 4 m, Testing phase 

 
e) h = 5 m, Training phase 

 
f) h = 5 m, Testing phase 

 
g) h = 6 m, Training phase 

 
h) h = 6 m, Testing phase 

Fig. 11: a) - h) ANN performance in prediction of factor of safety by Fellenius’ method for two-layer soil 
embankment (for each wall height). 
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a) h = 3 m, Training phase 

 
b) h = 3 m, Testing phase 

 
c) h = 4 m, Training phase 

 
d) h = 4 m, Testing phase 

 
e) h = 5 m, Training phase 

 
f) h = 5 m, Testing phase 

 
g) h = 6 m, Training phase 

 
h) h = 6 m, Testing phase 

Fig. 12: a) - h) ANN performance in prediction of factor of safety by Bishop’s method for two-layer soil 
embankment (for each wall height). 
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