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Summary

For the analysis of R × R square contingency tables, we need to estimate
an unknown probability distribution with high confidence from obtained
observations. For that purpose, we need to perform the analysis using a
statistical model that fits the data well and has a simple interpretation. This
study proposes two original models that have symmetric and asymmetric
structures between the probability with which the sum of row and column
variables is t, for t = 2, . . . , R, and the probability with which the sum
of row and column variables is 2(R + 1) − t. The study also reveals that
it is necessary to satisfy the anti-global symmetry model, in addition to
the proposed asymmetry model, in order to satisfy the proposed symmetry
model. This decomposition theorem is useful to explain why the proposed
symmetry model does not hold. Moreover, we show that the value of the
likelihood ratio chi-squared statistic of the proposed symmetry model is
equal to the sum of those of the decomposed models. We evaluate the utility
of the proposed models by applying them to real-world grip strength data.
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1. Introduction

This study deals with R × R square contingency tables with the same row
and column ordinal classifications. Square contingency tables are usually
obtained by cross-classifying for matched-pairs data of the ordinal cate-
gorical variable. For such data, we are generally interested in whether the
probability that observations will fall in the (i, j)th cell, for i < j, of the
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table is equal to the probability that observations will fall in the (j, i)th
cell of the table. In other words, we are interested in whether or not there
exists symmetry of cell probability with respect to the main-diagonal cells
of the table. The symmetry (S) model (Bowker, 1948) is useful for analyz-
ing whether or not the above structure holds. Since the S model has severe
restrictions, various models with weaker restrictions have been proposed,
for example, the conditional symmetry (CS) model (McCullagh, 1978), the
global symmetry (GS) model (Read, 1977), and so on. Read (1977) showed
that (i) it is necessary to satisfy the GS model, in addition to the CS model,
in order to satisfy the S model, and (ii) the value of the likelihood ratio chi-
squared statistic of the S model is equal to the sum of those of the CS and
GS models.

On the other hand, we are occasionally interested in whether (i) the
probability that observations will fall in the (i, j)th cell, for i+ j < R + 1,
of the table is equal to the probability that observations will fall in the
(R + 1 − i, R + 1 − j)th cell of the table, and (ii) the probability that
observations will fall in the (i, j)th cell, for i+j < R+1, of the table is equal
to the probability that observations will fall in the (R+1−j, R+1−i)th cell
of the table. In other words, we are interested in whether or not there exists
point-symmetry (i.e., the structure (i)) and symmetry (i.e., the structure
(ii)) of cell probability with respect to the anti-diagonal cells of the table.
The anti-point-symmetry (AP) (Tomizawa, 1985) and anti-symmetry (AS)
(Iki, 2016) models are useful for analyzing whether the above structures
(i) and (ii), respectively, hold or not. Since the AP model (or AS model)
has severe restrictions, various models with weaker restrictions have been
proposed, for example, the anti-conditional point-symmetry (ACP) model
(or the anti- conditional symmetry (ACS) model) (Tomizawa, 1986), and
the anti-global symmetry (AGS) model (Iki, 2016; Kurakami et al., 2017).
Kurakami et al. (2017) showed that (i) it is necessary to satisfy the AGS
model, in addition to the ACP model, in order to satisfy the AP model, and
(ii) the value of the likelihood ratio chi-squared statistic of the AP model
is equal to the sum of those of the ACP and AGS models.

Consider the data in Table 1. Table 1 is the data from a grip strength
test on women aged 15–69; source: National Health and Nutrition Ex-
amination Survey 2011–2012 (https://wwwn.cdc.gov/Nchs/Nhanes/2011-
2012/MGX_G.htm). The row variable X is the right hand grip strength
level and the column variable Y is the left hand grip strength level, with
the categories ordered from the highest level (1) to the lowest level (5). These
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levels are categorized based on the Muscle Strength Procedure Manual of
the National Health and Nutrition Examination Survey.

Table 1. The table below is the data from a grip strength
test on women aged 15–69; source: National Health and

Nutrition Examination Survey 2011–2012
(https://wwwn.cdc.gov/Nchs/Nhanes/2011-

2012/MGX_G.htm).
Left hand

Right hand (1) (2) (3) (4) (5) Total
Excellent (1) 380 229 49 17 2 677
Very good (2) 34 204 198 80 23 539

Good (3) 5 55 159 161 74 454
Fair (4) 1 11 37 106 168 323
Poor (5) 0 2 12 45 256 315

Total 420 501 455 409 523 2308

Yamamoto et al. (2016) pointed out that it is natural to evaluate an
individual’s grip strength level as the sum of the levels of both right and
left hands from these data. The sum of the levels of both right and left
hands (i.e., X + Y ) is categorized ordered from the highest level (2) to the
lowest level (10).

Yamamoto et al. (2013) proposed the sum-symmetry (SS) and condi-
tional sum-symmetry (CSS) models, which have symmetric and asymmetric
structures between the probability with which X+Y is t under X < Y , for
t = 2, . . . , 2R− 1, and the probability with which X +Y is t under X > Y .
The SS model represents a symmetric structure for the main diagonal cells
of table. Moreover, Yamamoto et al. (2013) showed that (i) it is necessary
to satisfy the GS model, in addition to the CSS model, in order to satisfy
the SS model, and (ii) the value of the likelihood ratio chi-squared statistic
of the SS model is equal to the sum of those of the CSS and GS models.

We point out that it may be more natural to evaluate whether or not
symmetric and asymmetric structures of X + Y exist for the anti-diagonal
cells of the table, rather than for the main diagonal cells. This is because,
for grip strength data such as Table 1, more people are right-handed, and
the grip strength of the dominant hand is usually higher than that of the
non-dominant hand. Therefore, we are interested in whether the individual’s
grip strength level (i.e., X + Y ) is symmetric for the midpoint R+ 1 in the
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range [2, 2R] of X + Y , rather than whether X + Y is symmetric between
X < Y and X > Y . If there is no clear reason to set a particular value
as the reference value of X + Y , it is natural to set the midpoint as the
reference value. In fact, the grip strength data in Table 1 are categorized
such that the midpoint R+ 1 in the range [2, 2R] of X + Y is the reference
value.

This study proposes two original models that have symmetric and asym-
metric structures between the probability with which X + Y is t, for t =
2, . . . , R, and the probability with which X + Y is 2(R+ 1)− t. This study
also reveals that it is necessary to satisfy the AGS model, in addition to
the proposed asymmetry model, in order to satisfy the proposed symmetry
model. Moreover, we show that the value of the likelihood ratio chi-squared
statistic of the proposed symmetry model is equal to the sum of those of
the proposed asymmetry and AGS models.

The remainder of this paper is organized as follows. Section 2 intro-
duces the two original models in square contingency tables. Section 3 gives
the orthogonal decomposition of the proposed symmetry model using the
proposed asymmetry model. Section 4 evaluates the utility of the proposed
models by applying them to real-world grip strength data. Section 5 closes
with concluding remarks.

2. Anti-sum-symmetry model

In this section, we propose two original models that have symmetric and
asymmetric structures between the probability with which X + Y is t, for
t = 2, . . . , R, and the probability with which X + Y is 2(R + 1)− t. First,
we propose the anti-sum-symmetry (ASS) model. The ASS model is defined
by

Pr(X+Y = t,X+Y < R+1) = Pr(X+Y = 2(R+1)−t,X+Y > R+1),

for t = 2, . . . , R. For grip strength data such as Table 1, when the ASS
model holds, the degree of an individual’s grip strength is symmetric with
respect to the midpoint R+ 1 in the range [2, 2R] of X + Y . Thus, we can
conclude that the median of the degree of an individual’s grip strength is
equivalent to the midpoint R + 1. The number of degrees of freedom (df)
for testing the goodness-of-fit of the ASS model is R− 1.

Next, we propose the anti-conditional sum-symmetry (ACSS) model.
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The ACSS model is defined by

Pr(X+Y = t,X+Y < R+1) = ∆ Pr(X+Y = 2(R+1)−t,X+Y > R+1),

for t = 2, . . . , R. The ACSS model with ∆ = 1 is equivalent to the ASS
model. For grip strength data such as Table 1, when the ACSS model holds,
the degree of an individual’s grip strength is asymmetric with respect to the
midpoint R + 1. Thus, we can conclude that (i) when ∆ > 1, the median
of the degree of an individual’s grip strength is smaller than the midpoint
R + 1, and (ii) when ∆ < 1, it is larger than the midpoint R + 1. The
number of df for testing the goodness-of-fit of the ACSS model is R− 2.

Interpretations such as those of the ASS and ACSS models cannot be
obtained from the SS model or the CSS model. Thus, the ASS and ACSS
models are useful for application to real-world data such as grip strength
data.

3. Orthogonal decomposition of the anti-sum-symmetry model

In this section, we show that (i) it is necessary to satisfy the AGS model,
in addition to the ACSS model, in order to satisfy the ASS model; (ii) the
value of the likelihood ratio chi-squared statistic of the ASS model is equal
to the sum of those of the ACSS and AGS models.

The AGS model (Iki, 2016; Kurakami et al., 2017) is defined by

Pr(X + Y < R+ 1) = Pr(X + Y > R+ 1).

We see that the AGS model has weaker restrictions than the ASS model
from the following equalities:

Pr(X + Y < R+ 1) =
R∑
t=2

Pr(X + Y = t,X + Y < R+ 1) and

Pr(X + Y > R+ 1) =
R∑
t=2

Pr(X + Y = 2(R+ 1)− t,X + Y > R+ 1).

Let U(M) denote that the model M holds. We obtain the following
decomposition theorem. Note that the number of df for the ASS model is
equal to the sum of those for the ACSS and AGS models.
Theorem 3.1. The following necessary and sufficient condition holds:

U(ASS)⇔ U(ACSS) ∧ U(AGS).
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Proof. It is clear that the necessary condition U(ASS) ⇒ U(ACSS) ∧
U(AGS) holds. We need to show that the sufficient condition U(ASS) ⇐
U(ACSS)∧U(AGS) also holds. Since the ACSS model holds, the following
equality holds:

R∑
t=2

Pr(X + Y = t,X + Y < R+ 1) =

∆
R∑
t=2

Pr(X + Y = 2(R+ 1)− t,X + Y > R+ 1).

Since the AGS model holds, we obtain ∆ = 1. The proof is complete.

Theorem 3.1 is useful for evaluating the cause of the fact that the ASS
model does not hold for given data.

We denote by nij the observed frequency in the (i, j)th cell of the ta-
ble, and by pij (= Pr(X = i, Y = j)) the probability that an observation
will fall in the (i, j)th cell of the table (i = 1, . . . , R; j = 1, . . . , R). We as-
sume multinomial sampling over the cells of the square contingency table;
that is, the observed frequencies {nij} have a multinomial distribution with
parameters that are the cell probabilities {pij}.

Each model can be tested for goodness-of-fit by means of, for example,
the likelihood ratio chi-square statistic (denoted by G2) with the corre-
sponding df. The test statistic G2 of the model M is given by

G2(M) = 2
R∑
i=1

R∑
j=1

nij log

(
nij
êij

)
,

where êij is the maximum likelihood estimate (MLE) of the expected fre-
quency eij under the model M.

We obtain the following orthogonality of the test statistic.
Theorem 3.2. The following equality holds:

G2(ASS) = G2(ACSS) +G2(AGS).

Proof. Although details are omitted, the êij under the ASS, ACSS and AGS
models are provided as (1), (2) and (3), respectively.
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êij =


Ai+j +Bi+j

2Ai+j
nij (i+ j < R+ 1),

nij (i+ j = R+ 1),
Ai+j +Bi+j

2Bi+j
nij (i+ j > R+ 1),

(1)

where

Ai+j =
∑∑
(k,l)∈Ci+j

nkl, Bi+j =
∑∑
(k,l)∈Di+j

nkl,

Ci+j =

{
{(k, l)|k + l = i+ j, k + l < R+ 1} (i+ j < R+ 1),
{(k, l)|k + l = 2(R+ 1)− (i+ j), k + l < R+ 1} (i+ j > R+ 1),

and

Di+j =

{
{(k, l)|k + l = 2(R+ 1)− (i+ j), k + l > R+ 1} (i+ j < R+ 1),
{(k, l)|k + l = i+ j, k + l > R+ 1} (i+ j > R+ 1).

êij =



(Ai+j +Bi+j)E
Ai+j(1 + E)

nij (i+ j < R+ 1),

nij (i+ j = R+ 1),
Ai+j +Bi+j
Bi+j(1 + E)

nij (i+ j > R+ 1),

(2)

where

E =

R∑
t=2

∑∑
(k,l)∈Ct

nkl

R∑
t=2

∑∑
(k,l)∈Dt

nkl

=

∑∑
k+l<R+1

nkl∑∑
k+l>R+1

nkl
.

êij =


1 + E

2E
nij (i+ j < R+ 1),

nij (i+ j = R+ 1),
1 + E

2
nij (i+ j > R+ 1).

(3)

The nij/êij in the ASS model is equal to the product of those in the ACSS
and AGS models. Therefore, the value of the test statistic G2 for the ASS
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model is equal to the sum of those for the ACSS and AGS models. The
proof is complete.

From Theorem 3.2, we see that the value of the likelihood ratio chi-
squared statistic for testing the goodness-of-fit of the ASS model assuming
that the ACSS model holds (i.e., G2(ASS|ACSS)) is equal to the value of
G2(AGS), because G2(ASS|ACSS) = G2(ASS)−G2(ACSS).

4. Application to real-world grip strength data

Consider the data set in Table 1, which presents a cross-classification of grip
strength levels for right and left hands. These data are from a grip strength
test on women aged 15–69; source: National Health and Nutrition Ex-
amination Survey 2011–2012 (https://wwwn.cdc.gov/Nchs/Nhanes/2011-
2012/MGX_G.htm).

Table 2 gives the values of G2 for the ASS, ACSS and AGS models. This
table shows that the ACSS model fits well, but the other models fit poorly.
Table 3 shows the MLEs of the expected frequencies under the ACSS model.

Table 2. Values of the likelihood ratio chi-square
statistic G2 for each model applied to the data of

Table 1
Applied models Degrees of freedom G2

ASS 4 43.98∗

ACSS 3 3.50
AGS 1 40.48∗

∗ indicates significance at the 0.05 level.

Under the ACSS model, the MLE of ∆ is 1.33. In the ACSS model,
the probability with which X + Y is t, for t = 2, . . . , R is estimated to be
1.33 times higher than the probability with which X + Y is 2(R + 1) − t.
Moreover, since ∆ > 1, the median of the degree of an individual’s grip
strength is estimated to be smaller than the midpoint R + 1. Therefore,
it may be necessary to revise the criteria for the grip strength level, since
we can infer that the women’s grip strength tends to be higher than the
criteria.

From Theorem 3.1, we can infer that the cause of the fact that the ASS
model does not hold for the data of Table 1 is the AGS model rather than
the ACSS model.
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Table 3. Maximum likelihood estimates of expected frequencies under the
anti-conditional sum-symmetry (ACSS) model applied to the data set in

Table 1
Left hand

Right hand (1) (2) (3) (4) (5)
Excellent (1) 380 229 49 17 2

(362.54) (236.26) (48.72) (17.66) (2)
Very good (2) 34 204 198 80 23

(35.08) (202.83) (205.74) (80) (21.91)
Good (3) 5 55 159 161 74

(4.97) (57.15) (159) (153.35) (74.57)
Fair (4) 1 11 37 106 168

(1.04) (11) (35.24) (106.82) (161.42)
Poor (5) 0 2 12 45 256

(0) (1.90) (12.09) (43.24) (273.46)

Note: Estimates under the ACSS model are shown in parentheses
in the second line.

5. Concluding remarks

This study has proposed two original models (the ASS and ACSS models)
that have symmetric and asymmetric structures between the probability
with which X + Y is t, for t = 2, . . . , R, and the probability with which
X+Y is 2(R+1)− t. These models are useful for evaluating whether or not
the level of X + Y is symmetric with respect to the midpoint R+ 1 in the
range [2, 2R] of the X + Y . The proposed models are useful for application
to data where one is interested in the structure of X + Y , such as grip
strength data, because interpretations such as those of the proposed models
cannot be obtained from the existing models.

In addition, this study has revealed that (i) it is necessary to satisfy the
AGS model, in addition to the ACSS model, in order to satisfy the ASS
model (Theorem 3.1), and (ii) the value of the likelihood ratio chi-squared
statistic of the ASS model is equal to the sum of those of the ACSS and
AGS models (Theorem 3.2). Theorem 3.1 is useful for evaluating the cause
of the fact that the ASS model does not hold for given data, as shown in
Section 4. From Theorem 3.2, we note that the value of the likelihood ratio
chi-squared statistic for testing the goodness-of-fit of the ASS model assum-
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ing that the ACSS model holds (i.e., G2(ASS|ACSS)) is equal to the value
of G2(AGS), because G2(ASS|ACSS) = G2(ASS)−G2(ACSS).
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