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Summary

The normal distribution is considered to be one of the most important
distributions, with numerous applications in various fields, including the
field of agricultural sciences. The purpose of this study is to evaluate the
most popular normality tests, comparing the performance in terms of the
size (type I error) and the power against a large spectrum of distributions
with simulations for various sample sizes and significance levels, as well
as through empirical data from agricultural experiments. The simulation
results show that the power of all normality tests is low for small sample
size, but as the sample size increases, the power increases as well. Also,
the results show that the Shapiro–Wilk test is powerful over a wide range
of alternative distributions and sample sizes and especially in asymmetric
distributions. Moreover the D’Agostino–Pearson Omnibus test is powerful
for small sample sizes against symmetric alternative distributions, while
the same is true for the Kurtosis test for moderate and large sample sizes.

Key words: type I error, power, normality tests, normal and alternative
distributions, simulation

1. Introduction

Plant breeding is defined as the science of changing plant traits in order to
produce new genotypes with desired characteristics. The traits can be di-
vided into two distinct types based on their effects on the plant phenotype:
qualitative and quantitative traits. In qualitative traits, the phenotypic ex-
pression is determined by single genes and the phenotypic distribution is
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discrete, while in quantitative traits, the phenotypic expression is a combi-
nation of the effect of multiple genes and the effect of the environment, and
this results in the phenotypic distribution being continuous. For the identi-
fication of the superior genotypes from the phenotype and the evaluation of
their quantitative traits, the researcher uses carefully designed experiments
and analytical methods.

Nearly all inferential statistics (t-tests, ANOVA, simple or multiple re-
gression, quality control charts, etc.) rely upon the assumption of normality,
often together with homoscedasticity and independence. Take for instance
the context of plant breeding mentioned above, where it is assumed that the
continuous distribution of quantitative traits (crop yield, plant height, etc.)
will be a normal distribution. However, many studies report that the dis-
tributions of quantitative traits in crops deviate from normality (Hennessy,
2009; Limpert and Stahel, 2011) and exhibit both skewness, either positive
(Chen and Miranda, 2008) or negative (Atwood et al., 2003; Ramirez et
al., 2003), and nonnormal kurtosis (Day, 1965; Buccola, 1986; Moss and
Shonkwiller, 1993). Although one-way ANOVA is considered a robust test
against normality when the sample sizes are small and the normality as-
sumption is violated, the results may be incorrect or misleading (Glass et
al., 1972). In the case that the assumption of normality is not satisfied,
the researcher applies an appropriate data transformation, which often re-
sults in contradictory conclusions (Stroup, 2014), or uses non-parametric
or distribution-free tests, which have less statistical power than parametric
tests (Dixon, 1954).

Thus, for researchers and practitioners in various often diverse fields, a
need arises to validate the assumption of normality in order to ensure the
appropriateness of the selected statistical technique as well as the accuracy
of the results obtained. This validation can be explored with diagnostic
plots such as Q-Q plots, box-plots and histograms. These diagnostic plots
are useful, but although ways of choosing among them are available in the
literature (see e.g. Atkinson and Riani, 2012; Fox, 1991), some expertise
that comes with practice, knowledge and experience is required for their
interpretation. Most of the time, statistical tests are used to confirm con-
clusions based on visual inspection of graphical methods. It should be noted,
though, that limitations and/or disadvantages are not uncommon in their
implementation. Indeed, for instance, although statistical tests have the
advantage of making an objective judgment of normality most of the time,
they have the disadvantage of being frequently insensitive in situations with
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small sample sizes or oversensitive in cases with large sample sizes. It turns
out that in at least some of such cases one can identify graphical tools hav-
ing the advantage of allowing relatively better judgment to assess normality
than statistical tests, which in turn implies that decisions should be made
without neglecting the adequacy/efficiency of graphs (Kozak and Piepho,
2018). At the same time statistical tests should not be overrated and sta-
tistical reasoning should be exercised in all instances, not only for choosing
the most appropriate test, but also for choosing between a statistical or a
graphical tool for assessing normality.

There are plenty of normality tests, with different assumptions and ap-
plications, available in the literature, and their goodness of fit properties
have been examined by many researchers (Seier, 2002; Yazici and Yolacan,
2007; Krauczi, 2009; Romao et al., 2010; Yap and Sim, 2010; Adefisoye et
al., 2016; Islam, 2019). Hence, the researcher faces a fundamental problem,
namely how to choose the most suitable test for his/her dataset.

This paper has as its purpose the comparison of various statistical tests
using various types of simulation data sets and identification of how these
types of data influence the selection of the optimal normality test. We also
wish to explore which are the conditions and the assumptions that convert
every test separately into the most powerful normality test for agriculture
datasets. For illustrative purposes two real examples on experimental data
analysis, set in the ANOVA context, are presented to demonstrate, in prac-
tice, similarities and dissimilarities among the statistical tests used in this
comparative study for assessing normality.

2. Materials and methods

The normality tests evaluated in this study can be classified into three
main categories. From the first category, the empirical distribution function
(EDF) tests, the Lilliefors (LL), Cramer von Mises (CvM) and Anderson–
Darling (AD) tests were evaluated. The second category includes regression
and correlation tests, from which the Shapiro–Wilk (SW) and Shapiro–Francia
(SW) tests were evaluated. The third category includes moment tests, from
which the Skewness (SK), Kurtosis (KU), D’Agostino–Pearson Omnibus
(DA), Jarque Bera (JB) and Adjusted Jarque Bera (JBadj) tests were eval-
uated.

Since a theoretical comparison is not feasible, a simulation procedure
was used to evaluate these normality tests in testing if a random sample
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of n independent observations comes from a normal population N (µ, σ2),
where µ is the mean and σ2 the variance.

The null and alternative hypotheses are:

H0: The distribution is normal
H1: The distribution is not normal

Initially 10,000 simulations were carried out, in which samples of differ-
ent size (n = 10, 20, 30, 40, 50, 100, 200, 500, 1000 and 2000) were generated
from the standard normal distribution. Then the empirical probability of
Type I error (size), which is defined as the number of times the null hy-
pothesis of normality is rejected divided by the total number of simulations
(10,000), was evaluated.

Moreover a simulation procedure was carried out in which samples of
different size (n= 10, 20, 30, 40, 50, 100, 200 and 500) were generated from
five alternative symmetric distributions (Beta, Logistic, t(3), t(5) and t(10))
(Figure 1a), five asymmetric distributions (Gamma, Chi-square, Exponen-
tial, Weibull and Lognormal) (Figure 1b), and three bimodal (Figure 1c)
and contaminated (Figure 1d) normal distributions. The empirical power
of the test, which is calculated as the ratio of the number of times the null
hypothesis is rejected over 10,000 (the number of simulations) when the
alternative hypothesis of non-normality is true, was evaluated. Tukey’s con-
taminated normal model (Tukey, 1960) was used to create the contaminated
and bimodal distributions.

F (x) = (1− ε)N(µ1, σ21) +N(µ2, σ22) and 0 < ε < 1. (1)

In addition, empirical data from two wheat evaluation experiments with
negative and positive skewness in distribution were used to confirm the re-
sults of the study. The first experiment comprised eight bread wheat va-
rieties and was laid down according to a randomized complete block de-
sign with three replicates, and the second experiment comprised five durum
wheat varieties and was laid down according to a randomized complete block
design with four replicates. The experiments took place at the experimental
station of the Agricultural University of Athens, in the area of Copais, in
the growing seasons 2011–2012 and 2014–2015.

The simulations were performed with the statistical software R 3.4, and
the nortest, normtest, distr and extradistr packages were used.
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Figure 1. Probability density functions of normal and alternative distributions

3. Results

Size of the test
The empirical probabilities of type I error, for a=0.01 and 0.05, appear in

Table 1. All normality tests performed well against normal distribution for
all sample sizes used, except the D’Agostino–Pearson Omnibus test, which
showed an increased probability of Type I error in small sample sizes.

Power of the test – Symmetric alternatives
Table 2 summarizes the empirical powers with significance level a =

0.05 for the symmetric alternate distributions. The general and expected
pattern was observed that as the sample size increases the power of the
test also increases. Under the alternative Beta (2, 2) distribution, which
is a short-tailed symmetric distribution, the Kurtosis test had the highest
power for small sample sizes and the D’Agostino–Pearson Omnibus test
had the highest power for moderate and large sample sizes, followed by the
Kurtosis and Shapiro–Wilk tests.

In the case of the t(10) (Student-t test with 10 degrees of freedom) dis-
tribution, which is a symmetric distribution with a slightly higher kurtosis
than the normal, all moment and correlation-regression tests had the great-
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Table 1. The empirical probability of type I error of tests for normality

N(0, 1) α=0.01
N LL AD CvM SW SF SK KU DA JB JBadj
10 1.5 1.2 1 0.8 0.7 1.1 1.4 2.4 1.1 0.7
20 1.1 0.9 1.1 0.7 1.5 0.7 1 2.2 0.9 1.2
30 1.1 0.8 1.3 1.6 0.9 0.5 1.2 1.6 0.3 1.5
40 1.8 1.5 1 1.3 1.1 1.1 0.7 2.5 0.6 1.3
50 1.2 1.2 1.6 0.6 1 0.7 1.3 1.8 1 0.8
100 1.2 1.1 1.2 0.8 1.3 1.2 0.6 1.4 0.9 1.5
200 1.4 1 1.2 1.2 1.1 1 1.1 1.3 1 0.9
500 0.8 0.8 1.3 1.2 1 0.8 1.5 1.4 1 1.2
1000 0.8 1.1 0.7 1 1.4 0.6 0.8 1.5 0.7 0.7
2000 0.9 1.5 0.9 1.1 1.1 1.5 1 0.8 0.7 0.7

N(0, 1) α=0.05
N LL AD CvM SW SF SK KU DA JB JBadj
10 5.4 4.7 4.1 4.8 4.5 4.5 5.6 6.2 5.2 5.4
20 4.2 5.9 6 4.3 4.5 5.1 5 5.2 4.7 6.1
30 5.1 5.7 5.3 5.1 5.2 6.4 5.3 6.3 4.6 3.9
40 5.1 5.7 5.8 6 6 6.1 6.5 5.9 4.2 5.8
50 5.2 4.8 4.2 5.1 5 3.9 5 4.2 5.3 5.2
100 4.5 4.5 5.4 4 4.3 5.3 5.3 5.3 4.6 4.8
200 5.1 5.6 4.9 5.1 5.1 3.6 4.1 5.1 4.6 6.1
500 5.4 4.8 5.2 4.9 5.8 5.5 4.8 4.4 4.9 3.9
1000 5.3 4.3 5 5.5 5.9 5.3 4.9 4.7 5.4 5.2
2000 4.2 3.5 3.7 5.6 4.3 5.4 4.5 4.3 4.6 5.3

est power for small sample sizes, and the D’Agostino–Pearson Omnibus test
had the highest power for moderate and large sample sizes, followed by the
Jarque Bera test.

Under the logistic (5, 2) distribution, which is also a symmetric distribu-
tion with a slightly higher kurtosis than the normal, all moment tests had
the highest power for small sample sizes, followed by correlation-regression
tests, and the Kurtosis test had the highest power for moderate and large
sample sizes, followed by the Adjusted Jarque Bera test.

For a t(5) distribution, which is a symmetric long-tailed distribution,
the D’Agostino–Pearson Omnibus test and all moment tests had the highest
power for small sample sizes, followed by correlation-regression tests, and
the Kurtosis test had the highest power for moderate and large sample sizes,
followed by the Adjusted Jarque Bera test.

In the situation where the alternative distribution is a t(3) distribution,
which is a symmetric distribution with higher kurtosis than the normal, the
D’Agostino–Pearson Omnibus test and all moment tests had the highest
power for small sample sizes, followed by correlation-regression tests and the
Kurtosis test, while the Shapiro–Francia and Kurtosis tests had the highest
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power for moderate and large sample sizes, followed by the Adjusted Jarque
Bera test.

Finally, we observe that the Skewness test fails in almost all of the
symmetric distributions considered (in some more than in others).

Power of the test – Asymmetric alternatives
The empirical powers for asymmetric distributions with high skewness

and kurtosis appear in Table 3. Under Weibull (2, 3) and Gamma (2, 3)
distributions, the Shapiro–Wilk test had the highest power for all sample
sizes, followed by the Shapiro–Francia and Skewness tests. For a Chi-squared
distribution with 3 degrees of freedom, the Cramer von Mises test had the
highest power for all the sample sizes, followed by the Shapiro–Wilk and
Lilliefors tests. Observe that the Kurtosis test appears to have the worst
performance among all tests considered.

The power results for the Lognormal (0, 0.5) distribution show that
the Shapiro–Francia and Shapiro–Wilk tests had the highest power for all
sample sizes, followed by the Skewness test. Under the Exponential (1)
distribution, the Shapiro–Wilk and Shapiro–Francia tests had the highest
power for the entire range of sizes considered.

Power of the test – bimodal and contaminated alternatives
The empirical powers for bimodal distributions are presented in Ta-

ble 4. Under bimodal distributions with negative and positive skewness, the
Shapiro–Wilk and Shapiro–Francia tests had the highest power for all sam-
ple sizes, followed by the Skewness test. For a bimodal distribution being
a mixture of two normal distributions with the same variance but different
means, the Shapiro–Wilk and Shapiro–Francia tests had the highest power
for all sample sizes, followed by the Anderson–Darling and Skewness tests.
Observe that the Kurtosis test is less effective than all others for all of the
bimodal distributions examined.

The empirical powers for contaminated normal distributions appear in
Table 5. Under a contaminated distribution with high kurtosis, the D’Agostino–
Pearson Omnibus and Kurtosis tests had the highest power for moderate
and large sample sizes, followed by the Skewness test.

Under a contaminated distribution with medium kurtosis, the D’Agostino–
Pearson Omnibus and Kurtosis tests had the highest power for small sample
sizes, while the Kurtosis, Jarque Bera and Adjusted Jarque Bera tests had
the highest power for moderate and large sample sizes. When the contami-
nation is low the D’Agostino–Pearson Omnibus test had the highest power



244 A. Anastasiou, A. Karagrigoriou, A. Katsileros

Table 2. The empirical powers (a = 0.05) for symmetric alternative distributions

Beta (2, 2) Sk=0, Ku=0.82
n LL AD CvM SW SF SK KU DA JB JBadj
10 3.1 4.9 4.4 5 2.6 1.8 6.4 2.7 2.5 1.7
20 3.6 5.1 5.8 4.3 2.5 0.9 7.2 3 0.8 0.2
30 4.7 7.4 7.2 7.9 2.4 0.3 8.3 8.6 0 0.2
40 6.9 10.4 7.4 11.3 4.2 0.2 11.3 15.4 0 0
50 8 14.1 10.3 15.9 5 0.3 17.8 25.3 0.1 0
100 14.5 29.8 25.3 45.2 22.4 0.3 55.6 64.9 4 1.1
200 35.7 69.7 56.8 92.2 75.8 0.2 95.9 96.3 67.2 56.3
500 83.9 99.9 97.8 100 100 0 100 100 100 100

t(10) Sk=0, Ku=0.82
n LL AD CvM SW SF SK KU DA JB JBadj
10 5.4 6.4 6.5 6.1 8.5 8.4 5.6 8.6 6.4 8.2
20 6.8 8.2 7.4 11.5 11.6 10.9 11.6 11.8 12.9 12.5
30 8.1 10.6 9.8 13.7 15 13.3 15 15.9 14.2 14.9
40 8.4 11 9.1 12.3 17 13.4 19.3 16.5 19 17.4
50 9.4 12.8 13 14 17.4 17.4 19.7 20 20.1 21.4
100 11.4 16.6 17.1 23.9 28.7 18.6 31.3 30.4 25.5 29.2
200 14.5 23.3 20.3 37.1 40.3 19.3 47.2 43.3 44.9 46.1
500 27.8 50.2 40.4 65.2 71.6 23.6 75.7 68 73.8 72.5

Logistic (5, 2) Sk=0, Ku=-1.1
n LL AD CvM SW SF SK KU DA JB JBadj
10 7.6 8 6.9 7.1 9.2 8.1 5.5 10.3 9.8 9.3
20 7.2 10.9 11 11.9 13 15.0 14.4 15.2 15.4 15.1
30 10.2 11.8 9.8 14.5 16.6 15.7 16 18.6 19 17.9
40 9.2 13.8 13.4 16.8 20.2 14.9 23.7 20.8 20.9 21.2
50 10.6 15.3 15.1 17 23 18.9 26.4 23.1 24.8 24.4
100 15.1 22 21.1 29.4 37.8 20.8 39.5 33.8 38.2 39.3
200 27.1 39.4 35.5 48.9 54.9 25.4 61.5 50 58.6 61.3
500 52.8 76.8 70.3 83.7 87.3 28 91.8 85.6 88 90.4

t(5) Sk=0, Ku=-2.5
n LL AD CvM SW SF SK KU DA JB JBadj
10 8.9 10.5 9.7 10.4 11.9 13.1 9.3 14.7 14.6 13.8
20 12.7 16 15.5 18.6 21.6 20.7 21 23.5 20.9 21.4
30 15.3 22.2 19.4 28.2 28.1 24.9 28.7 31.9 31.4 33.5
40 19.5 27.4 23.4 28.5 36.1 27.9 37.2 37.1 37.2 38.9
50 21.4 29.3 26.4 34.2 40.9 30.3 43.1 41.2 41.3 41.7
100 33 48.1 41.5 57.4 63.9 43.5 65.7 60.3 62.8 67.2
200 54.9 73.6 67.1 82.1 85.4 45.3 87.5 82.2 86.5 86.2
500 88.3 97.7 96 99 99.4 55.7 99.8 98.7 99.3 99.9

t(3) Sk=0, Ku=-7.5
n LL AD CvM SW SF SK KU DA JB JBadj
10 16.2 22.3 17 19.1 20.6 19.4 15.5 24 23.3 23.3
20 24.1 31.4 27.9 32.2 36.9 33.1 37.6 37.5 37.9 38.3
30 36.6 44.8 39.3 47 49.6 41.2 49.5 50.2 52.6 54.2
40 40.8 52.9 50.6 53.6 57.4 45.9 64.4 59.5 58.7 62.7
50 49.9 59.2 54.9 61.6 70.7 50.3 71 66.7 69.1 70.7
100 73.4 83.5 82.6 88.3 92.6 61.6 91.8 86.6 89.6 90
200 93.4 98.7 97.7 98.8 99.4 73.2 98.8 98.6 99 99.4
500 100 100 100 100 100 80.2 100 100 100 100
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Table 3. The empirical powers (a = 0.05) for asymmetric distributions

Weibull (2,3) Sk=-2.7, Ku=-12
n LL AD CvM SW SF SK KU DA JB JBadj
10 5.7 7.5 7.7 8.5 8.5 7.7 7.3 9.6 8.4 7
20 8.4 13.3 12 13.6 14.4 16.2 8.1 12.6 11.2 11.2
30 13 17.4 16.3 25.1 17.9 20.8 9.6 15.7 17 14.6
40 17.8 22.5 22 30.1 27.4 30.1 11.4 25.9 21.2 20.4
50 20.2 29.1 27.9 42.4 35.1 35.8 13.1 26.4 24 23.6
100 39 60 50.3 77.8 74.2 68.4 14.6 56.1 53.4 47.1
200 68.3 93.8 84.8 99.5 99 95.5 17.5 94.6 95 93.1
500 98.2 100 100 100 100 100 29.2 100 100 100

Gamma (2,3) Sk=1.3, Ku=-2.6
n LL AD CvM SW SF SK KU DA JB JBadj
10 16.9 22.6 19.2 23.8 22.5 21.6 12.4 21.1 19.1 17.4
20 30.9 46.3 45.1 52.3 50.9 46.5 23.5 37.1 41.1 39.1
30 46.4 66.4 60.2 75.5 70.1 69.7 34 56 58.2 49.8
40 59.1 79.1 74.3 87 83.5 80 42.7 69.1 69.3 66.3
50 68.3 88.8 83.2 95.5 92.1 90 48.5 79.2 80.6 78.4
100 95.5 99.8 99.1 100 99.9 99.6 72 99.4 99.5 99
200 100 100 100 100 100 100 99.5 100 100 100
500 100 100 100 100 100 100 100 100 100 100

Chisquare (3) Sk=1.5, Ku=-3.2
n LL AD CvM SW SF SK KU DA JB JBadj
10 27.9 27.8 30.9 32.8 26.9 19.9 25.2 25.2 21.3 19.3
20 60.3 52.6 67.9 65 56.4 31.5 46.5 51.2 44.7 39.5
30 78.5 73.6 84 81.7 73.9 44.8 65.5 70.6 61.7 58.9
40 90.7 85.4 95.1 93.2 89.3 50.7 78 84.1 74.8 73.6
50 96.2 93.7 99.1 97.7 94.8 59.2 89.7 90.7 86.3 84.4
100 100 99.9 100 100 99.7 80.8 100 99.8 100 98.7
200 100 100 100 100 100 96.8 100 100 100 100
500 100 100 100 100 100 100 100 100 100 100

Lognormal (0,0.5) Sk=1.5, Ku=-3.7
n LL AD CvM SW SF SK KU DA JB JBadj
10 17 23.2 22.7 23.5 24.9 26.4 18.1 24.8 23.2 18.3
20 31.6 47.5 41.8 51 51.2 48 28.4 44.7 43.9 39.3
30 45.9 65.1 60.9 71 70.7 65.5 40.5 59.8 61.8 58.3
40 61.2 78.2 74.1 84.9 82.6 81.2 49.4 72.5 73.6 71.4
50 67.6 88.4 81.4 91.3 92.7 87 58 83 82.3 79.7
100 94.7 99.4 98.7 99.7 99.7 99.9 80 98.9 98.6 99.1
200 100 100 100 100 100 100 95.9 100 100 100
500 100 100 100 100 100 100 100 100 100 100

Exponential (1) Sk=1.8, Ku=-4.6
n LL AD CvM SW SF SK KU DA JB JBadj
10 16.2 22.3 17 19.1 20.6 19.4 15.5 24 23.3 23.3
20 24.1 31.4 27.9 32.2 36.9 33.1 37.6 37.5 37.9 38.3
30 36.6 44.8 39.3 47 49.6 41.2 49.5 50.2 52.6 54.2
40 40.8 52.9 50.6 53.6 57.4 45.9 64.4 59.5 58.7 62.7
50 49.9 59.2 54.9 61.6 70.7 50.3 71 66.7 69.1 70.7
100 73.4 83.5 82.6 88.3 92.6 61.6 91.8 86.6 89.6 90
200 93.4 98.7 97.7 98.8 99.4 73.2 98.8 98.6 99 99.4
500 100 100 100 100 100 80.2 100 100 100 100
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Table 4. The empirical powers (a = 0.05) for Bimodal distributions

Bimodal 0.5xN(5,2)+0.5xN(10,1) Sk=–.43, Ku=–.96
n LL AD CvM SW SF SK KU DA JB JBadj
10 5.7 7.5 7.7 8.5 8.5 7.7 7.3 9.6 8.4 7
20 8.4 13.3 12 13.6 14.4 16.2 8.1 12.6 11.2 11.2
30 13 17.4 16.3 25.1 17.9 20.8 9.6 15.7 17 14.6
40 17.8 22.5 22 30.1 27.4 30.1 11.4 25.9 21.2 20.4
50 20.2 29.1 27.9 42.4 35.1 35.8 13.1 26.4 24 23.6
100 39 60 50.3 77.8 74.2 68.4 14.6 56.1 53.4 47.1
200 68.3 93.8 84.8 99.5 99 95.5 17.5 94.6 95 93.1
500 98.2 100 100 100 100 100 29.2 100 100 100

Bimodal 0.5xN(5,1)+0.5xN(9,1.5) Sk=.27, Ku=–.96
n LL AD CvM SW SF SK KU DA JB JBadj
10 16.9 22.6 19.2 23.8 22.5 21.6 12.4 21.1 19.1 17.4
20 30.9 46.3 45.1 52.3 50.9 46.5 23.5 37.1 41.1 39.1
30 46.4 66.4 60.2 75.5 70.1 69.7 34 56 58.2 49.8
40 59.1 79.1 74.3 87 83.5 80 42.7 69.1 69.3 66.3
50 68.3 88.8 83.2 95.5 92.1 90 48.5 79.2 80.6 78.4
100 95.5 99.8 99.1 100 99.9 99.6 72 99.4 99.5 99
200 100 100 100 100 100 100 99.5 100 100 100
500 100 100 100 100 100 100 100 100 100 100

Bimodal 0.5xN(5,1)+0.5xN(8,1) Sk=0, Ku=–.94
n LL AD CvM SW SF SK KU DA JB JBadj
10 19.3 27.9 27.8 30.9 32.8 26.9 19.9 25.2 25.2 21.3
20 39.5 60.3 52.6 67.9 65 56.4 31.5 46.5 51.2 44.7
30 58.9 78.5 73.6 84 81.7 73.9 44.8 65.5 70.6 61.7
40 73.6 90.7 85.4 95.1 93.2 89.3 50.7 78 84.1 74.8
50 84.4 96.2 93.7 99.1 97.7 94.8 59.2 89.7 90.7 86.3
100 98.7 100 99.9 100 100 99.7 80.8 100 99.8 100
200 100 100 100 100 100 100 96.8 100 100 100
500 100 100 100 100 100 100 100 100 100 100

for small and moderate sample sizes, followed by Adjusted Jarque Bera,
which together with the Kurtosis test is powerful for moderate and large
sample sizes.

Experimental data analysis
In this section we present, for illustrative purposes, the analysis of two

experiments that took place at the Copais experimental station of the Agri-
cultural University of Athens, Greece. The data refer to the growing seasons
2011–2012 and 2014–2015.

Regarding the empirical data of the experiments, the RCBD model was
considered, the associated residuals were calculated, and their distribution,
accounting for both treatments and blocks, was tested with diagnostic tools
as well as normality tests. Diagnostic tools (histogram and QQ plot) indicate
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Table 5. The empirical powers (a = 0.05) for Contaminated distributions

Contaminated Sk=0, Ku=-1.36
n LL AD CvM SW SF SK KU DA JB JBadj
10 7.2 10 7.6 10.1 12 10.8 8.2 12.8 11.4 11.6
20 9.6 13 13.1 13 15.8 16 17 19.8 18.5 19.6
30 10.6 14.9 13.7 19.5 22.9 21.8 26.2 22 26.4 25.4
40 12.8 19.8 17.4 25.7 30.2 24.2 30.6 28.9 28.2 27.8
50 12.4 23.1 18 26.7 35.2 28.9 35.3 31.5 35.4 36.6
100 19.7 33.8 27.9 47.1 52.4 29.9 56 49.1 53.7 57.2
200 30.6 54 43.9 67.2 77.4 32.8 79.5 73 79.7 77
500 64.4 88.7 80.7 96.1 97.1 37.3 98.3 96.9 97.3 97.8

Contaminated Sk=0, Ku=1.16
n LL AD CvM SW SF SK KU DA JB JBadj
10 5.7 7.7 8.7 8 10.9 8.1 5.5 11.3 8.2 8.9
20 6.8 11.2 9.7 10.7 10.2 13.4 13.9 15 14.3 13.4
30 9.2 10.4 11.3 14.8 18.9 21 19.1 19.3 17 20.3
40 9.5 13 11 18.5 21.7 18.7 24.8 23.3 25.7 20.5
50 11.1 16.3 11.8 23.7 24.1 21.2 26 25.2 29.6 28.8
100 12.5 20.5 16 33.7 38.1 25 42.6 38.3 42.6 44
200 15.8 28.8 22.2 48.4 61.8 30.6 61.2 58.3 61.1 59.2
500 31.2 56 43.4 83.3 87.9 35.6 89.1 86.3 87.8 88.6

Contaminated Sk=0, Ku=0.7
n LL AD CvM SW SF SK KU DA JB JBadj
10 6.2 6.7 5.7 6.1 7.3 6.5 6.6 8.5 7.5 7.4
20 5.6 8.8 7.3 10.3 7.7 10.2 11.2 11.1 10.6 10.8
30 6 7.8 8.4 10 10.8 11.7 12.9 14.6 14.5 13.9
40 7.3 9.1 8.9 12 15.6 12.9 15 17.4 15.3 14.9
50 7.1 11.9 10.6 14 16.5 17.2 19.2 19.1 18.1 20.2
100 8 12.3 10.7 20.1 26.2 20.4 29.2 25.1 28.3 30.8
200 10.8 14.6 11.5 35 38.3 26.7 41.5 39.2 45 39.9
500 16.4 24 19 58.5 65.4 29.7 68.3 63.2 64.9 66

that the distributions of the residuals were not symmetric (Figure 2 and
3). The residual distribution for the first set of data, with sample size 20,
was positively skewed (0.77) and had kurtosis coefficient 1.76, while for
the second set of data, with sample size 24, the residual distribution was
negatively skewed (-0.63) and the kurtosis coefficient was -0.50. The results
of the normality tests are presented in Tables 6 and 7. In both cases, the
moment and EDF tests show conflicting results. The Shapiro–Wilk and
Shapiro–Francia tests show similar results, in not rejecting the normality of
the error distribution in the first data set and marginally rejecting it in the
second data set. Also, notice that the outcome of SW and SF for the second
data set is aligned with the D’Agostino–Pearson Omnibus test, which is
preferable in cases with a higher coefficient of kurtosis.
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Figure 2. Histogram and QQ plot of the first experiment (n=20).

Figure 3. Histogram and QQ plot of the second experiment (n=24).

Table 6. Empirical Data (Skewness = -0.63, Kurtosis = -0.50)

n LL AD CvM SW SF SK KU DA JB JBadj
20 0.007 0.026 0.023 0.034 0.048 0.176 0.422 0.361 0.174 0.221

* * * * * ns ns ns ns ns

Table 7. Empirical Data (Skewness = 0.77, Kurtosis = 1.76)

n LL AD CvM SW SF SK KU DA JB JBadj
24 0.348 0.232 0.358 0.101 0.063 0.096 0.077 0.054 0.053 0.047

ns ns ns ns ns ns ns ns ns *
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4. Conclusion

This comprehensive study evaluates the performance of ten normality tests
against normal and alternative distributions for different sample sizes and
significance levels. When the distribution is normal, the normality tests
performed well with respect to Type I error, while in the case of alternative
distributions, the power of the test depends on the type of distribution,
the sample size and the significance level. By increasing both the sample
size and the significance level, the power of these tests also increases. All
the moment tests, expect the Skewness test, are the most powerful against
symmetric distributions, followed by the Shapiro–Wilk test. The test that
stands out among the moment tests is the D’Agostino–Pearson Omnibus
test, which is the most powerful for small samples for both symmetric and
contaminated distributions. The Skewness test, unlike other moment tests,
is powerful only for asymmetric distributions. The empirical distribution
function tests are suitable for asymmetric distributions, but the Shapiro–
Wilk test is the one that produces most accurate results in this class of
distributions, followed by the Skewness test. The most powerful of the EDF
tests is the Anderson–Darling test, followed by Cramer von Mises’ test,
while the Lilliefors test had the lowest power.

All in all, researchers must combine descriptive estimators and diag-
nostic plots and exercise statistical reasoning in order to identify the dis-
tribution of the data and to select the appropriate normality test. This is
required because otherwise structural problems of overuse of statistical tests
arise (Kozak and Piepho, 2018). According to the results of the extensive
simulation study in the previous section, if the researcher suspects that
the distribution is symmetric with moderate or high kurtosis coefficient,
and the sample size is small, then the recommended test is D’Agostino–
Pearson Omnibus, while for larger sample sizes the Kurtosis test is recom-
mended. In all other cases the recommended test is either Shapiro–Wilk or
Shapiro—Francia, both of which are available in most statistical software.
The findings of this paper are in good agreement with Yap and Sim (2011).

The conclusions of this study may prove very helpful in the analysis of
data from quantitative trait experiments in the future, particularly for plant
breeding purposes.
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