
Selection of variables in Discrete Discriminant Analysis

Anabela Marques1, Ana Sousa Ferreira2,
Margarida G.M.S. Cardoso3

1Barreiro College of Technology, Setúbal Polytechnic, IPS, Portugal,
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Summary

In Discrete Discriminant Analysis one often has to deal with dimensionality
problems. In fact, even a moderate number of explanatory variables leads
to an enormous number of possible states (outcomes) when compared to
the number of objects under study, as occurs particularly in the social
sciences, humanities and health-related fields. As a consequence, classifica-
tion or discriminant models may exhibit poor performance due to the large
number of parameters to be estimated. In the present paper, we discuss
variable selection techniques which aim to address the issue of dimen-
sionality. We specifically perform classification using a combined model
approach. In this setting, variable selection is particularly pertinent, en-
abling the handling of degrees of freedom and reducing computational cost.

Key words: combining models, Discrete Discriminant Analysis, variable
selection

1. Introduction

Discrete Discriminant Analysis (DDA) is a multivariate data analysis tech-
nique that aims to classify multivariate observations of discrete variables
into one of K a priori defined classes.

In DDA, an n-dimensional sample of multivariate observations is con-
sidered X = (x1,x2, ...,xn), where xi represents the ith observed state
(i ∈ {1, ..., n}), described by M discrete variables, xi = (xi1, xi2, ..., xiM )
(observed state). The class of each observation - one of K exclusive classes
(C1, C2, ..., CK) - is assumed to be known.
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In general, when dealing with DDA applications, different DDA tech-
niques may yield different classification errors for the same set of observa-
tions. In the social sciences, classification problems often exhibit a high
number of variables, small or moderate size samples, and also many miss-
ing states. In this setting, the use of combined models provides a means
to improve the overall performance of classification and also its stability
(Ferreira, 2000; Brito, 2002; Brito et al., 2006). However the related di-
mensionality problems have to be addressed, since there are often a large
number of parameters to be estimated and a comparatively small sample
available. In this work, four feature selection methods for DDA are dis-
cussed, having the aim of identifying the variables that most discriminate
between the a priori defined classes. Two statistics are considered for this
purpose: Chi-Square and Mutual Information. The simple statistics’ values
rankings provide two criteria. Two alternative selection criteria are based
on the Chi-Square’s p-values using the Bonferroni Correction and the False
Discovery Rate methods (Benjamini and Hochberg, 1995). The reduction
in the number of variables is expected to improve the DDA algorithm’s
efficiency and reduce computational cost.

The DDA approach considered is based on a linear combination of the
First-order Independence Model (FOIM) and the Dependence Trees Model
(DTM) (Marques et al., 2008).

Classification performance is analyzed using the percentage of correctly
classified observations. In addition, the runtime of the DDA algorithm
(implemented in R software) is reported.

2. Variable Selection

Although feature selection is a very common theme in the literature on
Discriminant Analysis with continuous predictor variables, methods pro-
posed for Discriminant Analysis with discrete predictor variables are quite
rare. However, in order to obtain good performances in DDA tasks, dimen-
sionality issues have to be addressed. The selection of the best discriminant
variables in a DDA problem is the focus of the present study. Hence we
try to find M∗ variables, M∗ << M , leading to better decision rules, using
the following methods:

1. Descriptive: the Chi-Square statistic (Q2) and the Mutual Infor-
mation index (I) between the M predictor variables and the target
classes provide a means to rank the predictors;
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2. Inferential: the p-values corresponding to the Chi-Square statistic
provide alternative means to rank the same predictors - using the
Bonferroni Correction (BON) and the False Discovery Rate (FDR)
we obtain two additional rankings of predictors (see e.g. Benjamini
and Hochberg, 1995).

When the descriptive indicators are used we report:

1. The minimal feasible solution i.e. the one having the smallest number
of predictors which can be treated by the DDA model (note that when
we have null mutual information, it is not possible to apply DTM)

2. The solution corresponding to the best DDA performance, i.e. that
having the maximum percentage of correctly allocated cases using
two-fold cross-validation.

The first descriptive indicator considered is the Chi-Square statistics (Q2)
defined as follows:

Q2(Xm, Xm′) =
L∑
i=1

K∑
j=1

(nij − ni.n.j

n )2

ni.n.j

n

(1)

where:
ni. - is the number of observations in the i-th category of Xm.
n.j - is the number of observations in the j-th category of Xm′ .
K - is the number of classes.
L - is the number of categories of the predictor.

and

n =

L∑
i=1

ni. =

K∑
j=1

n.j =

L∑
i=1

K∑
j=1

nij (2)

The mutual information index (I) is defined as follows:

I(Xm, Xm′) =

L∑
i=1

K∑
j=1

nijlog
nij
ni.n.j

(3)

Both Q2(Xm, Xm′) and I(Xm, Xm′) measure the strength of association
between Xm and Xm′ . When considering Xm as the predictor and Xm′

the target classes, these measures provide a means to rank the predictors
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according to their discriminant power. In addition, when referring to the
use of DTM, an I(Xm, Xm′) may also be used to measure the association
between predictors.

The Chi-Square statistic Q2 makes it possible to test the association
between each predictor and the target classes, following a χ2 distribution
with (L − 1)(K − 1) degrees of freedom under the null hypothesis (refer-
ring to null association) between the predictor and the target class. The
implementation of M Chi-Square tests corresponding to the M predictors
originates the p-values p1, ..., pm, ..., pM .

The Bonferroni Correction (Benjamini and Hochberg, 1995) is a multi-
ple-comparison correction used when several statistical tests are being per-
formed simultaneously. The Bonferroni Correction sets the α value for the
entire set of M tests equal to α by taking the α value for each test equal
to α/M .

Thus, according to Bonferroni Correction (Benjamini and Hochberg,
1995) we select the predictors which yield

Pm ≤
α

M
(4)

The Bonferroni Correction and other traditional multiple comparison pro-
cedures are generally too conservative. In order to overcome this limita-
tion, several alternative procedures have been proposed, such as Holm’s
procedure (Holm, 1979) offering a more flexible trade-off between the test’s
power and error. The False Discovery Rate (FDR) approach - (Benjamini
and Hochberg, 1995) and (Silva, 2010) - also addresses multiple hypothesis
testing to correct for multiple comparisons. In a list of statistically sig-
nificant studies (e.g. studies where the null-hypothesis could be rejected),
the FDR procedure is designed to control the expected proportion of incor-
rectly rejected null hypotheses (”false discoveries”) in a less conservative
way compared with the Bonferroni Correction. This method relies on the
ranked p-values (increasing values) - p1:M , ..., pm:M , ..., pM :M - and selects
the predictors satisfying:

Pm:M ≤
m

M
α (5)

3. Combining Models in DDA

In Discrete Discriminant Analysis the most usual classification rule is based
on the Full Multinomial Model (FMM) (Celeux and Mkhadri, 1994) where
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the within-class state probability functions are multinomial. When using
M binary variables, this model involves the estimation of 2M − 1 param-
eters in each class, and so is cumbersome. The First-order Independence
Model (FOIM) (Goldstein and Dillon, 1978; Celeux and Mkhadri, 1994)
assumes the independence of variables within each class, therefore reducing
the number of parameters to be estimated. Using FOIM, the conditional
probability of assigning x∗ to class Ck is estimated by:

f̂k (x∗ | X) =
M∏

m=1

# {xj ∈ Ck : xjm = x∗m}
nk

, j = 1, . . . , n; k = 1, . . . ,K (6)

where nk represents the Ck class sample dimension.
FOIM, however, can be unrealistic in some situations. One of the al-

ternative models that take into account the interactions between variables
is the Dependence Trees Model (DTM), (Celeux and Nakache, 1994; Pearl,
1988).

DTM provides, for each class, an estimate of the conditional probability
functions based on the idea proposed by Pearl, 1988. Pearl demonstrated
that through knowledge of a graph G, where X1, ..., XM represent its M
vertices, the probability distribution fG, associated with the graph can be
calculated as the product of the conditional probabilities:

fG(x1, ..., xM ) = f(xr(m))
M−1∏
l(m)=1

f
(
xm | xl(m)

)
(7)

where xl(m) represents a variable that is linked to the variable xm in this
graph, arbitrarily choosing one vertex as the root of the graph, xr(p).

The Chow and Liu (Celeux and Nakache, 1994; Pearl, 1988) algorithm
is used to construct the graph for each class the length of each graph’s edge
(referred to the pair of variables (xm, xm′)) represents a measure of the
association between the same variables, mutual information in particular.
After the calculation of the CM

2 mutual information values (see formula
(3)), the graph G, with (M − 1) edges, corresponding to the highest total
mutual information is selected. For example, take M = 5 variables and
if the most important predictor relations are (X2, X1), (X3, X2), (X4, X2)
and (X5, X2), then Figure 1. represents an example of a dependence tree
and the probability distribution of the first-order dependence tree is

f̂k (x∗|X) = fCk (x∗|X) =

= f̂(x∗1|X)f̂(x∗2|x∗1, X)f̂(x∗3|x∗2, X)f̂(x∗4|x∗2, X)f̂(x∗5|x∗2, X)
(8)
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Figure 1. Example of a dependence tree for the case of M=5 variables

where the marginal and conditional probability functions are determined
simply using the observed relative frequencies in sample X.

FOIM is commonly used when independent predictors are considered,
while DTM takes into account the relationship between predictors. A com-
bined model using FOIM and DTM may offer some advantages.

Combining models generally aims to obtain more robust and stable
results and provide a better data fit (Bishop, 1995; Brito et al. 2006).
Previous research by Sousa Ferreira (1999, 2000, 2010) revealed good per-
formance for a linear combination of FMM and FOIM in the small case
setting, particularly when within-class independent structures or equal cor-
relation structures were considered. These studies also revealed that the
(single) coefficient (ranging from 0 to 1) derived for the combination, often
tended to heavily weight FOIM while substantially reducing the contri-
bution of FMM, even when considering smoothed frequencies. Based on
this empirical conclusion, the replacement of FMM by DTM is considered
in the present work. This approach follows on from an earlier proposal,
which seems to be promising (Marques et al., 2008). The corresponding
conditional probability function is estimated as follows:

P̂ (x∗ ∈ Ck|β,X) = βP̂FOIM (x∗ ∈ Ck|X) + (1− β)P̂DTM (x∗ ∈ Ck|X) (9)

In order to derive classification rules, the Bayes formula (the posterior
probability of an observation - x∗ - being assigned to one of the a priori
known classes) is used:

P (x∗ ∈ Ck|X,π) =
πkfk(x∗|X)

K∑
k=1

πkfk(x∗|X)

, k = 1, . . . ,K (10)
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where πk represents the prior probability of class Ck and fk(x) represents
the probability function of x in the same class. By applying this rule,
an observation x∗ is classified in the class with the maximum posterior
probability, thus minimizing the assignment error.

The prior probabilities πk, often have to be estimated using the sam-
ple at hand. When this sample is randomly selected from the population
without taking into account the observations class membership, maximum
likelihood estimators are used: πk = nk

n , where nk is the sample size of the
class Ck. Otherwise, if the sample considered is the union of K independent
samples of size nk, k = 1, ...,K, previously selected within each class Ck,
equal prior probabilities are considered for all classes, πk = 1

K .

4. Data Analysis and Results

This work aims to evaluate the impact of variable selection techniques on
DDA results, specifically when using the FOIM and DTM combination
(see(9)). The data analysis refers to three real data sets: Alexithymics,
Parents and Retail. In these data sets, small and moderate sized samples
are considered.

1. Alexithymics data: 11 variables and 34 individuals
This data set consists of 34 dermatology’s patients evaluated by a
psychological test set (Prazeres, 1996). The whole sample is divided
into three classes: Nonalexithymics (C1), Alexithymics (C2), Interme-
diate (C3) according to the value obtained in a psychological test - the
TAS-20 (Twenty Item Toronto Alexithymia Scale). For each patient
the value of eleven binary variables of the Rorchach test were avail-
able. The Rorschach test is a psychological projective test in which
subjects perceptions of inkblots are recorded and analyzed. The pre-
dictors are:

V1. CF + C > 0
V2. CF + C − FC > 0
V3. V > 0
V4. C ′ > 0
V5. T = 1
V6. SumSH − SumC > 0
V7. CombC + SH > 0−No
V8. Popular > 8−No
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V9. AnalCDI −No
V10. Mor > 2−No
V11. ”L > 1, 1”−No

According to the responses given by each subject concerning each
inkblot, coders are used to represent the type of answer. For example:

• C - represents chromatic color responses;

• C ′ - represents achromatic color responses;

• F - is the format element of responses;

• V - represents pure vista responses where shading is interpreted
as dimensionality;

• T - represents texture responses;

• SH - represents shading responses;

• Mor - represents morbid contents in responses;

• L - is a ratio that compares the frequency of form responses and
will all other answers;

• Popular - represents very frequent responses.

The type of each subject’s responses leads to an evaluation of person-
ality characteristics, for example CF + C > 0 indicates less affective
modulation or CDI represents a difficulty of coping. Results con-
cerning this example are presented in Table 2.

2. Parents data: 11 variables and 240 individuals
This data refers to a study which aims to analyze the relationship be-
tween marital satisfaction and coparenting in different stages of the
family life cycle (Saraiva, 2010). Coparenting refers to the way in
which partners relate to one another as parents and includes coop-
eration, triangulation and conflict. Cooperation reflects the extent
to which couples support and respect each other as parents, triangu-
lation the extent to which parents form an unhealthy alliance with
the child and conflict the extent to which parents disagree about the
child. The target classes are related to essential stages of family life
life - families with children in preschool or primary school (C1) and
families with children in middle school or the 3rdcycle (C2).
This data set refers to 240 individuals and considers eleven binary
variables.
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V1. Gender
V2. Marital Satisfaction global score for mothers
V3. Marital Satisfaction global score for fathers
V4. Coparenting global score for mothers
V5. Coparenting global score for fathers
V6. Cooperation global score for mothers
V7. Triangulation global score for mothers
V8. Conflict global score for mothers
V9. Cooperation global score for fathers
V10.Triangulation global score for fathers
V11.Conflict global score for fathers

Results concerning this example are presented in Table 3.

3. Retail data: 11 variables and 440 individuals
The Retail Actions data set refers to 440 clients of a wholesale busi-
ness. There are two target classes: retail channel (C1) and Horeca
(Hotel, Restaurant and Caf channel) (C1). Predictors refer to eleven
managerial actions that may have an impact on the clients’ purchases.

V1. offering free samples or tastings
V2. offering discount tickets
V3. improving the quality of products
V4. improving packaging
V5. improving the store layout
V6. preventing shortages
V7. offering more competitive prices
V8. offering a better selection of products and brands
V9. offering more diversity of products and brands
V10. presenting more in-store highlights and leaflets
V11. extending the products assortment

Answers refer to a binary scale: 1 - probably no; 2 - probably yes (this
action will have an impact on my purchases). Results concerning this
example are presented in Table 4.

The results of variable selection are presented in Table 1. According to
these results the descriptive methods always provide a means to perform
feature selection, while the inferential methods evidence limitations. In
fact, increasing alpha values does not provide any solutions when using
the Bonferroni Correction, while the FDR procedure provides solutions for
Parents and Retail using α = 29% and α = 38%, respectively.
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Table 1. Selected variables for each data set and selection methods

Variable Selection Data Sets
Alexithymics Parents Retail

Q2 - minimal selection V1,V3,V5,V6,V9 (M*=5) V1,V6 (M*=2) V4,V9 (M*=2)

Q2 - best selection V1,V3,V4,V5, V1,V2,V4,V6, V2,V4,V8,V9,
V6,V7,V9,V11 (M*=8) V9 (M*=5) V11 (M*=5)

I - minimal selection V1,V3,V6,V9 (M*=4) V1,V6 (M*=2) V4,V9 (M*=2)

I - best selection V1,V2,V3,V6, V1,V2,V4,V6, V2,V4,V8,V9,
V7,V9,V10,V11 (M*=8) V9 (M*=5) V11 (M*=5)

BON no selection1 no selection1 no selection1

FDR no selection1 V1,V6 (M*=2) V2,V5 M*=2
1Using inferential methods (BON and FDR) it was not possible to select any set
of variables allowing the classification of subjects, even on increasing the α values

to 100%.

In Table 1 we represent the minimal selection, i.e. the smallest set of
variables that allowed the classification of subjects using the FOIM-DTM
combination. We also present the best selection, i.e. the set of variables
leading to the best percentage of correctly classified observations.

Classification results based on the selected variables are presented in
Tables 2, 3 and 4.

The FOIM-DTM combination coefficients values (β values) appear in
the first column of the tables. The next columns concern the percentage
of correctly classified observations, using classical two-fold cross-validation:
two subsamples split at random are used as ”Test” (sequentially) and the
average of the corresponding performance measures is presented.

Runtime calculations were obtained using the same computer and the
same DDA algorithm implemented in the R software.

The results of the experiments lead us to the following conclusions:

• Computational costs (time of execution) can decrease significantly
(e.g. in the ALEXITHYMICS results with 11 predictors and 5 pre-
dictorsthe time decreases from 20 hours to 46 seconds) while classifi-
cation accuracy stays approximately the same (e.g. 55.9% to 55.8%
in the same ALEXITHYMICS experiments).

• The descriptive methods always provide a means to implement the
predictor selection, while the inferential methods require specific con-
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Table 2. Alexithymics Classification Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β All Variables Q2 I
(11 Var.) M*=5 M*=8 M*=4 M*=8

0 (DTM) 53.0% 50.0% 47.1% 47.1% 53.0%
0.20 44.1% 50.0% 53.0% 53.0% 58.8%
0.40 41.2% 50.0% 53.0% 47.1% 61.7%
0.50 53.0% 38.2% 64.7% 47.1% 67.6%
0.60 53.0% 47.1% 58.8% 47.1% 61.7%
0.80 55.9% 52.9% 50.0% 47.1% 55.8%

1 (FOIM) 47.0% 55.8% 47.1% 47.1% 47.0%
Runtime 1225.2 min. 0.77 min. 21.47 min. 0.38 min. 21.11 min.

Table 3. Parents Classification Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β All Variables (11 Var.) M*=2 (Q2, I and FDR) M*=5 (Q2 and I)
0 (DTM) 50.8% 57.1% 50.8%

0.20 50.8% 57.1% 50.8%
0.40 52.5% 57.1% 53.4%
0.60 52.0% 57.1% 53.8%
0.80 53.3% 57.1% 55.8%

1 (FOIM) 53.8% 57.1% 58.4%
Runtime 1713.5 min. 0.24 min. 4.26 min.

Table 4. Retail Classification Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β All Variables M*=2 M*=2 M*=5
(11 Var.) (Q2 and I) (FDR) (Q2 and I)

0 (DTM) 45.1% 60.2% 44.4% 58.6%
0.20 45.9% 60.2% 44.4% 58.6%
0.40 46.6% 60.2% 44.4% 60.2%
0.60 48.1% 60.2% 44.4% 58.6%
0.80 45.9% 60.2% 44.4% 61.7%

1 (FOIM) 50.4% 60.2% 63.9% 54.1%
Runtime 1483.2 min. 0.44 min. 0.44 min. 7.56 min.
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ditions which may not be verified (particularly when the samples are
small, as in the ALEXITHYMICS case).

• The inferential methods, when applied, yield very high significance
levels (38% for RETAIL and 29% for PARENTS ). However, the FDR
inferential method yields the best results (best two variable selections
attaining the maximum accuracy) for the RETAIL data set. For the
PARENTS data set, the FDR results are similar to the Chi-Square
and Mutual Information statistics (the same two predictors being
selected).

5. Conclusions and Perspectives

In the present work, we compare the performance of four methods of feature
selection for Discrete Discriminant Analysis (DDA) - the aim is to identify
the predictors that most discriminate between the a priori defined classes.
We specifically use a recent DDA methodological approach, based on a
linear combination of the First Order Independence Model (FOIM) and
the Dependence Trees Model (DTM), (Marques et al., 2008).

According to the results obtained, we were always able to obtain an ad-
missible selection of variables using the descriptive methods - Chi-Square
and Mutual Information between predictors and the target classes provid-
ing the features’ ranking. As for the inferential methods, the predictors’
ranking provided by the Bonferroni correction (BON) and the False Dis-
covery Rate (FDR) procedures, applied to Chi-Square p-values, did not
always lead to a selection of acceptable predictors, even when the signifi-
cance level was increased up to the maximum. However, when BON and
FDR provided such a selection, the best classification rates for the FOIM
and DTM combined model were attained.

Experimental results also clearly illustrate the impact of variables selec-
tion in the DDA model computation time the reduction of computational
cost attained is remarkable.

The limitations regarding the inferential methods’ performance may be
due to the dimensions of the data sets (small and moderate)- this hypothesis
should be considered in future work. Future research could also include
additional methods for variable selection in DDA.
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