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1 Introduction

In the last decades the literature provides a huge development of the theory of differential
equations and inclusions of fractional order [5,13,17,19] etc.. This is due, mainly, to the
fact that fractional differential equations are very useful tools in order to model many
physical phenomena. In the fractional calculus there are several fractional derivatives.
From them, the fractional derivative introduced by Caputo in [6] allows to use Cauchy
conditions which have physical meanings.

A Caputo type fractional derivative of a function with respect to another function
[15] that extends and unifies several fractional derivatives existing in the literature like
Caputo, Caputo-Hadamard, Caputo-Katugampola was intensively studied in recent years
in [1–3, 9, 11, 12] etc., where existence results and qualitative properties of the solutions
for fractional differential equations defined by this fractional derivative are obtained.

The present paper is concerned with the following problem

Dα,ψ
C x(t) ∈ F (t, x(t)) a.e. ([0, T ]), x(0) ∈ X0, x′(0) ∈ X1, (1.1)
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where α ∈ (1, 2], Dα,ψ
C is the fractional derivative mentioned above, F : [0, T ]×R→ P(R)

is a set-valued map and X0, X1 ⊂ R are closed sets.
Our goal is to obtain a sufficient condition for local controllability along a reference

trajectory for problem (1.1). In order to do this we use the notion of derived cone to
an arbitrary subset of a normed space introduced by M.Hestenes in [15] and successfully
used to obtain necessary optimality conditions in control theory. Other properties of
derived cones (e.g., [18]) are very useful to obtain several results in the qualitative theory
of control systems.

We prove that the reachable set of a certain variational fractional differential inclusion
is a derived cone to the reachable set of the problem (1.1). In order to deduce this property
we need a continuous version of Filippov’s theorem for solutions of fractional differential
inclusions (1.1), recently obtained in [9].

We note that similar results for fractional differential inclusions defined by Caputo
fractional derivative may be found in [7] and for fractional differential inclusions defined
by Caputo-Katugampola fractional derivative are obtained in [8]; therefore, the present
paper extends and unifies all these results (see also [10]).

The paper is organized as follows: in Section 2 we present the notations and the
preliminary results to be used in the sequel and in Section 3 we provide our main results.

2 Preliminaries

The reachable set to a control system is, generally, neither a differentiable manifold, nor
a convex set, its infinitesimal properties may be characterized only by tangent cones
in a generalized sense, extending the classical concepts of tangent cones in differential
geometry and convex analysis, respectively. The next definition may be found in [13].

Definition 2.1. A subset D ⊂ Rn is said to be a derived set to X ⊂ Rn at x ∈ X
if for any finite subset {w1, ..., wk} ⊂ D, there exist s0 > 0 and a continuous mapping
c(·) : [0, s0]k → X such that c(0) = x and c(·) is (conically) differentiable at s = 0 with
the derivative col[w1, ..., wk] in the sense that

lim
Rk

+3τ→0

||c(τ)− c(0)−
∑k

i=1 τiwi||
||τ ||

= 0.

We shall write in this case that the derivative of c(·) at s = 0 is given by

Dc(0)τ =
k∑
i=1

τjwj ∀τ = (τ1, ..., τk) ∈ Rk
+ := [0,∞)k.

A subset C ⊂ Rn is said to be a derived cone of X at x if it is a derived set and also
a convex cone.

For the basic properties of derived sets and cones we refer to [15]; we recall that if
D is a derived set then D

⋃
{0} as well as the convex cone generated by D, defined by

cco(D) = {
∑k

i=1 λjwj; λj ≥ 0, k ∈ N, wj ∈ D, j = 1, ..., k} is also a derived set, hence
a derived cone.
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The fact that the derived cone is a proper generalization of the classical concepts in
differential geometry and convex analysis is illustrated by the following results in [15]:
if X ⊂ Rn is a differentiable manifold and TxX is the tangent space in the sense of
differential geometry to X at x, then TxX is a derived cone; also, if X ⊂ Rn is a convex
subset then the tangent cone in the sense of convex analysis is also a derived cone. Since
any convex subcone of a derived cone is also a derived cone, such an object may not
be uniquely associated to a point x ∈ X; moreover, simple examples show that even a
maximal with respect to set-inclusion derived cone may not be uniquely defined.

At the same time, the up-to-date experience in nonsmooth analysis shows that for
some problems, the use of one of the intrinsic tangent cones may be preferable. The
most known intrinsic tangent cones in the literature (e.g., [4]) are the contingent, the
quasitangent (intermediate) and Clarke’s tangent cones, defined, respectively, by

KxX = {v ∈ X; ∃ sm → 0+, ∃xm → x, xm ∈ X : xm−x
sm
→ v},

QxX = {v ∈ X; ∀sm → 0+, ∃xm → x, xm ∈ X : xm−x
sm
→ v},

CxX = {v ∈ X; ∀ (xm, sm)→ (x, 0+), xm ∈ X, ∃ ym ∈ X : ym−xm
sm

→ v}

The next property of derived cone, obtained by Hestenes (Theorem 4.7.4 in [15]) and
stated in the next lemma is essential in the proof of our main result.

Lemma 2.1. Let X ⊂ Rn. Then x ∈ int(X) if and only if C = Rn is a derived cone at
x ∈ X to X.

Corresponding to each type of tangent cone, say τxX one may introduce (e.g., [4]) a
set-valued directional derivative of a multifunction G(·) : X ⊂ Rn → P(Rn) (in particular
of a single-valued mapping) at a point (x, y) ∈ Graph(G) as follows

τyG(x; v) = {w ∈ Rn; (v, w) ∈ τ(x,y)Graph(G)}, v ∈ τxE.

We recall that a set-valued map, A(·) : Rn → P(Rn) is said to be a convex (respec-
tively, closed convex) process if Graph(A(·)) ⊂ Rn ×Rn is a convex (respectively, closed
convex) cone. For the basic properties of convex processes we refer to [4], but we shall
use here only the above definition.

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue measurable
subsets of I. Denote by P(R) the family of all nonempty subsets of R and by B(R) the
family of all Borel subsets of R.

As usual, we denote by C(I,R) the Banach space of all continuous functions x(·) : I →
R endowed with the norm |x(·)|C = supt∈I |x(t)| and by L1(I,R) the Banach space of all

(Bochner) integrable functions x(·) : I → R endowed with the norm |x(·)|1 =
∫ T

0
|x(t)|dt.

Consider β > 0, f(·) ∈ L1(I,R) and ψ(·) ∈ Cn(I,R) such that ψ′(t) > 0 ∀ t ∈ I.

Definition 2.2. a) The ψ - Riemann-Liouville fractional integral of f of order β is
defined by

Iβ,ψf(t) =
1

Γ(β)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))β−1f(s)ds,

where Γ is the (Euler’s) Gamma function defined by Γ(β) =
∫∞

0
tβ−1e−tdt.
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b) The ψ - Riemann-Liouville fractional derivative of f of order β is defined by

Dβ,ψf(t) =
1

Γ(n− β)
(

1

ψ′(t)

d

dt
)n
∫ t

0

ψ′(s)(ψ(t)− ψ(s))n−β−1f(s)ds,

where n = [β] + 1.
c) The ψ - Caputo fractional derivative of f of order β is defined by

Dβ,ψ
C f(t) = Dβ,ψ[f(t)−

n−1∑
k=0

f
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k],

where f
[k]
ψ (t) = ( 1

ψ′(t)
d
dt

)kx(t), n = β if α ∈ N and n = [β] + 1, otherwise.

We note that if β = m ∈ N then Dβ,ψ
C f(t) = f

[m]
ψ (t) and if n = [β] + 1 then

Dβ,ψ
C f(t) = 1

Γ(n−β)

∫ t
0
ψ′(s)(ψ(t) − ψ(s))n−α−1f

[n]
ψ (s)ds. Also, if ψ(t) ≡ t one obtains

Caputo’s fractional derivative, if ψ(t) ≡ ln(t) one obtains Caputo-Hadamard’s fractional
derivative ([14]) and, finally, if ψ(t) ≡ tσ one obtains Caputo-Katugampola’s fractional
derivative ([16]).

In what follows we need the following technical lemma proved in [2] (namely, Theorem
2 in [2]).

Lemma 2.2. Let α ∈ [1, 2) and ψ(·) ∈ C1(I,R) with ψ′(t) > 0 ∀ t ∈ I. For a given
integrable function h(·) : I → R, the unique solution of the initial value problem

Dα,ψ
C x(t) = h(t) a.e. (I), x(0) = x0, x′(0) = x1

is given by

x(t) = x0 + x1(ψ(t)− ψ(0)) +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds.

Definition 2.3. By a solution of the problem (1.1) we mean a function x ∈ C(I,R) for
which there exists a function h ∈ L1(I,R) satisfying h(t) ∈ F (t, x(t)) a.e. (I), Dα,ψ

C x(t) =
h(t) a.e. (I) and x(0) = x0, x′(0) = x1.

In this case we say that (x(·), h(·)) is a trajectory-selection pair of (1.1).

Hypothesis H1. (i) F (·, ·) : I ×R → P(R) has nonempty closed values and is L(I)⊗
B(R) measurable.

(ii) There exists L(·) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ·) is L(t)-
Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ R,

where dH(·, ·) is the Hausdorff distance

d(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

In what follows α ∈ [1, 2) and ψ(·) ∈ C1(I,R) with ψ′(t) > 0 ∀ t ∈ I.
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Hypothesis H2. i) S is a separable metric space and a(·), b(·) : S → R, ε(·) : S → (0,∞)
are continuous mappings.

ii) There exists the continuous mappings z(·) : S → AC(I,R) and q(·) : S → R such
that

(Dz(s))α,ψC (t) = h(s)(t) a.e. t ∈ I, ∀s ∈ S,

d(h(s)(t), F (t, z(s)(t)) ≤ q(s)(t) a.e. t ∈ I, ∀ s ∈ S.

Next we use the notations

ξ(s) =
1

1− Iα,ψL
(|a(s)− z(s)(0)|+ T |b(s)− (z(s))′(0)|+ ε(s) + Iα,ψq(s)), s ∈ S,

where Iα,ψL := supt∈I |Iα,ψL(t)| and Iα,ψq(s) := supt∈I |Iα,ψq(s)(t)|.
In order to characterize derived cones to reachable sets of problem (1.1) we need the

following parametrized version of Filippov’s theorem for fractional differential inclusion
(1.1) proved in [9].

Theorem 2.3. Assume that Hypotheses H1 and H2 are satisfied.
If |Iα,ψL| < 1, then there exist a continuous mapping x(·) : S → C(I,R) such that

for any s ∈ S, x(s)(·) is a solution of problem

Dα,ψ
C u(t) ∈ F (t, u(t)), u(0) = a(s), u′(0) = b(s)

and
|x(s)(t)− z(s)(t)| ≤ ξ(s) ∀(t, s) ∈ I × S. (2.1)

3 The results

We study the reachable set of (1.1) defined by

RF (T,X0, X1) := {x(T ); x(·) is a solution of (1.1)}.

We consider a certain variational fractional differential inclusion and we shall prove that
the reachable set of this variational inclusion from derived cones C0 ⊂ R to X0 and
C1 ⊂ R to X1 at time T is a derived cone to the reachable set RF (T,X0, X1). Throughout
in this section we assume the folowing hypotheses.

Hypothesis H3. i) Hypothesis H1 is satisfied and X0, X1 ⊂ R are closed sets.
ii) (z(·), h(·)) ∈ AC(I,R)×L1(I,R) is a trajectory-selection pair of (1.1) and a family

A(t, ·) : R→ P(R), t ∈ I of convex processes satisfying the condition

A(t, u) ⊂ Qh(t)F (t, ·)(z(t);u) ∀u ∈ dom(A(t, ·)), a.e. t ∈ I (3.1)

is assumed to be given and defines the variational inclusion

Dα,ψ
C w(t) ∈ A(t, w(t)). (3.2)



Vol. 58 (2022) A Caputo type fractional differential inclusion 17

Remark 3.1. We recall that for any set-valued map F (·, ·), one may find an infinite num-
ber of families of convex process A(t, ·), t ∈ I, satisfying condition (3.1); in fact any family
of closed convex subcones of the quasitangent cones, A(t) ⊂ Q(z(t),h(t))graph(F (t, ·)), de-
fines the family of closed convex process

A(t, u) = {v ∈ R; (u, v) ∈ A(t)}, u, v ∈ R, t ∈ I

that satisfy condition (3.1). For example, we may take an ”intrinsic” family of such closed
convex process; namely, Clarke’s convex-valued directional derivatives Ch(t)F (t, ·)(z(t); ·).

When F (t, ·) is assumed to be Lipschitz a.e. on I an alternative characterization of
the quasitangent directional derivative is (e.g., [4])

Qh(t)F (t, ·)((z(t);u)) =

{
w ∈ R; lim

τ→0+

1

τ
d(h(t) + τw, F (t, z(t) + τu)) = 0

}
. (3.3)

Lemma 3.1. Assume that Hypothesis H3 is satisfied, let C0 ⊂ R be a derived cone to X0

at z(0) and C1 ⊂ R be a derived cone to X1 at z′(0). Then the reachable set RA(T,C0, C1)
of (3.2) is a derived cone to RF (T,X0, X1) at z(T ).

Proof. In view of Definition 2.1, let {w1, ..., wm} ⊂ RA(T,C0, C1), hence such that there
exist the trajectory-selection pairs (v1(·), g1(·)), ..., (vm(·), gm(·)) of the variational inclu-
sion (3.2) such that

vj(T ) = wj, vj(0) ∈ C0, v′j(0) ∈ C1, j = 1, 2, ...,m. (3.4)

Since C0 ⊂ R is a derived cone to X0 at z(0) and C1 ⊂ R is a derived cone to X1 at
z′(0), there exist the continuous mappings c0 : S = [0, θ0]m → X0, c1 : S → X1 such that

c0(0) = z(0), Dc0(0)s =
m∑
j=1

sjvj(0) ∀ s ∈ Rm
+ ,

c1(0) = z′(0), Dc1(0)s =
m∑
j=1

sjv
′
j(0) ∀ s ∈ Rm

+ .

(3.5)

For any s = (s1, ..., sm) ∈ S and t ∈ I we set

z(s)(t) = z(t) +
m∑
j=1

sjvj(t),

h(s)(t) = h(t) +
m∑
j=1

sjgj(t),

q(s)(t) = d(h(s)(t), F (t, z(s)(t)))

(3.6)

and prove that z(·), q(·) satisfy the hypothesis of Theorem 2.3.
From the lipschitzianity of F (t, ·, ·) we have that for any s ∈ S, the measurable

function q(s)(·) in (3.6) it is also integrable.

q(s)(t) = d(h(s)(t), F (t, z(s)(t))) ≤
m∑
j=1

sj|gj(t)|+ dH(F (t, z(t)),
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F (t, z(s)(t))) ≤
m∑
j=1

sj|gj(t)|+ L(t)
m∑
j=1

sj|vj(t)|.

At the same time, the mapping s → q(s)(·) ∈ L1(I,R) is Lipschitzian (and, in
particular, continuous) since for any s, s′ ∈ S one may write

|q(s)(·)− q(s′)(·)|1 =

∫ T

0

|q(s)(t)− q(s′)(t)|dt

≤
∫ T

0

[|h(s)(t)− h(s′)(t)|+ dH(F (t, z(s)(t)), F (t, z(s′)(t))))]dt

≤ ||s− s′||(
m∑
j=1

∫ T

0

[|gj(t)|+ L(t)|vj(t)|]dt)

Define S1 := S\{(0, . . . , 0)} and ε(·) : S1 → (0,∞), ε(s) := ||s||2. It follows from
Theorem 2.3 the existence of a continuous function x(·) : S1 → C(I,R) such that for any
s ∈ S1, x(s)(·) is a solution of (1.1) with the property (2.1).

For s = 0 we define x(0)(t) = z(0)(t) = z(t) ∀t ∈ I. Obviously, x(·) : S → C(I,R) is
also continuous.

Finally, we define the function c(·) : S → RF (T,X0, X1) by

c(s) = x(s)(T ) ∀s ∈ S.

Obviously, c(·) is continuous on S and verifies α(0) = z(T ).
In order to complete the proof we have to show that c(·) is differentiable at s0 = 0 ∈ S

and its derivative is given by

Dc(0)(s) =
m∑
j=1

sjwj ∀ s ∈ Rm
+

which is equivalent with the fact that

lim
s→0

1

||s||

∣∣∣∣∣c(s)− c(0)−
m∑
j=1

sjwj

∣∣∣∣∣ = 0. (3.7)

Taking into account (3.6) we obtain

1

||s||

∣∣∣∣∣c(s)− c(0)−
m∑
j=1

sjwj

∣∣∣∣∣ ≤ 1

||s||
|x(s)(T )− z(s)(T )|

≤ 1

1− |Iα,ψL|
||s||+ 1

1− |Iα,ψL|
1

||s||

∣∣∣∣∣c0(s)− z(0)−
m∑
j=1

sjvj(0)

∣∣∣∣∣+
T

1− |Iα,ψL|

· 1

||s||

∣∣∣∣∣c1(s)− z′(0)−
m∑
j=1

sjv
′
j(0)

∣∣∣∣∣+
(ψ(T ))α

(1− |Iα,ψL|)Γ(α + 1)

∫ T

0

q(s)(u)

||s||
du
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and therefore in view of (3.5), relation (3.7) is implied by the following property of the
mapping q(·) in (3.6)

lim
s→0

q(s)(t)

||s||
= 0 a.e. (I). (3.8)

In order to prove the last property we note since A(t, ·) is a convex process for any
s ∈ S one has

m∑
j=1

sj
||s||

gj(t) ∈ A

(
t,

m∑
j=1

sj
||s||

vj(t)

)
⊂ Qh(t)F (t, ·)

(
z(t);

m∑
j=1

sj
||s||

vj(t)

)
a.e. (I).

Therefore, by (3.3) we obtain

lim
u→0+

1

u
d

(
h(t) + u

m∑
j=1

sj
||s||

gj(t), F

(
t, z(t) + u

m∑
j=1

sj
||s||

vj(t)

))
= 0. (3.9)

Finally, in order to prove that (3.9) implies (3.8) we take the compact metric space
Σm−1

+ = {σ ∈ Rm
+ ; ||σ|| = 1} and the real function ϕt(·, ·) : (0, θ0] × Σm−1

+ → R+ defined
by

ϕt(u, σ) =
1

u
d

(
h(t) + u

m∑
j=1

σjgj(t), F

(
t, z(t) + u

m∑
j=1

σjvj(t)

))
, (3.10)

where σ = (σ1, ..., σm) and which according to (3.9) has the property

lim
u→0+

ϕt(u, σ) = 0 ∀σ ∈ Σm−1
+ a.e. (I) (3.11)

Using the fact that ϕt(u, ·) is Lipschitzian and the fact that Σm−1
+ is a compact metric

space, from (3.11) it follows easily that

lim
u→0+

max
σ∈Σm−1

+

ϕt(u, σ) = 0

which implies the fact that

lim
s→0

ϕt

(
||s||, s

||s||

)
= 0 a.e. (I)

and the proof is complete.

Finally, we recall that fractional differential inclusion (1.1) is said to be locally con-
trollable along a reference trajectory z(·) at time T , if

z(T ) ∈ int(RF (T,X0, X1)).

Theorem 3.2. Let z(·), F (·, ·) and A(·, ·) satisfy Hypothesis H3, let C0 ⊂ R be a de-
rived cone to X0 at z(0) and C1 ⊂ R be a derived cone to X1 at z′(0). If the vari-
ational fractional differential inclusion in (3.2) is controllable at T in the sense that
RA(T,C0, C1) = R, then the differential inclusion (1.1) is locally controllable along z(·)
at time T .

Proof. It is enough to apply Lemma 2.1 and Lemma 3.1 in order to prove the theorem.

Remark 3.2. If in Theorem 3.4 ψ(t) ≡ t we obtain Theorem 3.4 in [7] and if in Theorem
3.4 ψ(t) ≡ tσ we get Theorem 3 in [8].
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[5] D. Băleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numer-
ical Methods, World Scientific, Singapore, 2012.
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