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1 Introduction

The aim of this paper is to consider the existence of the solutions for the
following nonlinear integral equation

x(t) = f

(
t,

∫ ϕ(t)

0

v (t, s, x(γ1(s))) ds, x(α(t))

)
×



122 İsmet Özdemir and Bekir İlhan and Ümit ÇakanAn. U.V.T.

×g
(
t, x(γ2(t))

∫ 1

0

u (t, s, x(γ3(s))) ds, x(β(t))

)
(1.1)

for t ∈ I = [0, 1].
In this study, we investigate a more general class of nonlinear integral equa-
tions which contain, as particular cases, a lot of integral equations, handled
before. Some special cases of Eq.(1.1) have been investigated by various au-
thors. For example, if we take f(t, y, x) = 1, then Eq.(1.1) can be reduced
to the integral equation considered in [11] which arises in models connected
with traffic and biology

x(t) = f(t, x(t))

∫ 1

0

u(t, s, x(s))ds. (1.2)

Similarly, if
f(t, y, x) = 1, g(t, y, x) = 1 + y

and
u(t, s, x) =

tφ(s)x

t+ s
, γ2(t) = γ3(t) = t,

then Eq.(1.1) can be reduced to the famous quadratic integral equation of
Chandrasekhar type studied in many papers [2, 6, 10–12] and given of the
form

x(t) = 1 + x(t)

∫ 1

0

t

t+ s
φ(s)x(s)ds. (1.3)

Finally, Caballero et al. in [9] studied the existence of solutions of following
functional-integral equation

x(t) = f

(
t,

∫ t

0

v (t, s, x(s)) ds, x(α(t))

)
×

×g
(
t,

∫ a

0

x(t)u (t, s, x(s)) ds, x(β(t))

)
(1.4)

under the following conditions:

(i) f, g : [0, a] × R × R → R are continuous and there exists nonnegative
constants ci, di; (i = 1, 2) such that

|f(t, 0, x)| ≤ c1 + d1|x|,
|g(t, 0, x)| ≤ c2 + d2|x|,

for all t ∈ [0, a] and x ∈ R.
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(ii) The functions f(t, y, x), g(t, y, x) satisfy a Lipschitz condition with re-
spect to the variables y and x with constants k, k′ respectively, i.e.,

|f(t, y1, x)− f(t, y2, x)| ≤ k|y1 − y2|,
|g(t, y1, x)− g(t, y2, x)| ≤ k|y1 − y2|,

for all t ∈ [0, a] and x, y1, y2 ∈ R and

|f(t, y, x1)− f(t, y, x2)| ≤ k′|x1 − x2|,
|g(t, y, x1)− g(t, y, x2)| ≤ k′|x1 − x2|,

for all t ∈ [0, a] and x1, x2, y ∈ R.

(iii) u, v : [0, a]× [0, a]× R→ R are continuous.

(iv) α, β : [0, a]→ [0, a] are continuous and satisfy,

|α(t1)− α(t2)| ≤ |t1 − t2|,
|β(t1)− β(t2)| ≤ |t1 − t2|,

for all t1, t2 ∈ [0, a].

(v) There exist nonnegative constants αi, βi; (i = 1, 2) such that

|v(t, s, x)| ≤ α1 + β1|x|,
|u(t, s, x)| ≤ α2 + β2|x|,

for all t, s ∈ [0, a] and x ∈ R.

(vi) The inequality[
k(α̃ + β̃r)a+ (c+ dr)

] [
k(α̃ + β̃r)ra+ (c+ dr)

]
≤ r

has a positive solution r0, where α̃ = max{α1, α2}, β̃ = max{β1, β2},
c = max{c1, c2} and d = max{d1, d2}.

(vii) k′
[
k(α̃ + β̃r0)a(1 + r0) + 2(c+ dr0)

]
< 1.

Theorem 1.1. [9, Theorem 3.1] Equation (1.4) has at least one solution
x ∈ C[0, a] under assumptions (i)− (vii).



124 İsmet Özdemir and Bekir İlhan and Ümit ÇakanAn. U.V.T.

It can be verified that if ϕ(t) = γ1(t) = γ2(t) = γ3(t) = t, then Eq.(1.1) is
reduced to Eq.(1.4) for a = 1.
Using the technique of a suitable measure of noncompactness in the Banach
algebra, we prove an existence theorem for Eq.(1.1). Also, we illustrate our
results by suitable examples. The results obtained in this paper generalize
several ones obtained up to now. Moreover, our sufficient conditions give the
results of [9] under some weaker conditions and for a rather general equation.

2 Auxiliary facts and notations

In this section, we give a collection of auxiliary facts which will be needed
further on. Assume that (E, ‖.‖) is a real Banach space with zero element
θ . Let B(x, r) denote the closed ball centered at x and with radius r. The
symbol Br stands for the ball B(θ, r). If X is a subset of E, then X and
ConvX denote the closure and convex closure of X, respectively. With the
symbols λX and X+Y , we denote the standard algebraic operations on sets.
Moreover, we denote by ME the family of all nonempty and bounded subsets
of E and NE its subfamily consisting of all relatively compact subsets. Next
we give the concept of a regular measure of noncompactness.

Definition 2.1. [3] A mapping µ : ME → R+ = [0,∞) is said to be a regular
measure of noncompactness in E if it satisfies following conditions:

(1) µ(X) = 0⇔ X ∈ NE;

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y );

(3) µ(X) = µ(ConvX) = µ(X);

(4) µ(λX) = |λ|µ(X), (λ ∈ R);

(5) µ(X + Y ) ≤ µ(X) + µ(Y );

(6) µ(X ∪ Y ) = max{µ(X), µ(Y )};
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(7) If {Xn} is a sequence of nonempty, bounded, closed subsets of E such
that Xn+1 ⊂ Xn, (n = 1, 2, ...) and limn→∞ µ(Xn) = 0, then the set
X∞ = ∩∞n=1Xn is nonempty.

In the sequel, we will work in the Banach space C(I) consisting of all real
functions defined and continuous on I = [0, 1]. The space C(I) is furnished
with the standard norm

‖x‖ = max{|x(t)| : t ∈ I}.

Obviously, space C(I) also has the structure of the Banach Algebra. We will
use a measure of noncompactness in space C(I) which was introduced in [3].
In order to define this measure let us fix a nonempty and bounded subset X
of C(I). For x ∈ X and ε ≥ 0 denoted by w(x, ε) the modulus of continuity
of function x, i.e.,

w(x, ε) = sup{|x(s)− x(t)| : t, s ∈ [0, 1], |t− s| ≤ ε}.

Further let us put

w(X, ε) = sup{w(x, ε) : x ∈ X}

and
w0(X) = lim

ε→0
w(X, ε).

Function w0 is a regular measure of noncompactness in space C(I), [7]. Fi-
nally, we recall the fixed point theorem of Darbo. To quote this theorem, we
need the following.
Hereafter, we assume unless stated otherwise that µ is a regular measure of
noncompactness in E.

Definition 2.2. [3] Let Ω be a nonempty subset of a Banach space E, and
let S : Ω → E be a continuous operator that transforms bounded subsets of
Ω onto bounded ones. We will say that S satisfies the Darbo condition (with
a constant k ≥ 0) if for any bounded subset X of Ω, we have

µ(SX) ≤ kµ(X).

In the case k < 1, operator S is said to be a contraction (with respect to µ).

Theorem 2.3. [7] Let Ω be a nonempty, bounded, closed and convex subset
of space E and let

S : Ω→ Ω

be a continuous transformation such that µ(SX) ≤ kµ(X) for any nonempty
subset X of Ω, where k ∈ [0, 1) is a constant. Then S has a fixed point in set
Ω.
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The following theorem is the main tool for our proof.

Theorem 2.4. [8] Assume that Ω is nonempty, bounded, convex and closed
subset of C(I) and operators F and G transform continuously set Ω into
C(I) in such a way that F (Ω) and G(Ω) are bounded. Moreover, assume
that operator T = F.G transforms Ω into itself. If operators F and G satisfy
Darbo condition on set Ω, with respect to measure of noncompactness w0, with
constants k1 and k2, respectively, then operator T satisfies Darbo condition
on Ω with constant

‖F (Ω)‖k2 + ‖G(Ω)‖k1.

In particular, if
‖F (Ω)‖k2 + ‖G(Ω)‖k1 < 1,

then T is a contraction with respect to measure of noncompactness w0 and
so has at least one fixed point in set Ω, where ‖X‖ is defined by the equality

‖X‖ = sup{‖x‖ : x ∈ X}

for any nonempty and bounded subset X of C(I).

3 The Main Result

We shall study the existence of the solutions of Eq.(1.1) assuming that fol-
lowing conditions are satisfied:

(i) f, g : I×R×R→ R are continuous. Also, f(t, y, x) and g(t, y, x) satisfy
Lipschitz condition with respect to variables y and x with constants
k, k′ respectively, i.e.,

|f(t, y1, x)− f(t, y2, x)| ≤ k|y1 − y2|,
|g(t, y1, x)− g(t, y2, x)| ≤ k|y1 − y2|,

for all t ∈ I and x, y1, y2 ∈ R and

|f(t, y, x1)− f(t, y, x2)| ≤ k′|x1 − x2|,
|g(t, y, x1)− g(t, y, x2)| ≤ k′|x1 − x2|,

for all t ∈ I and x1, x2, y ∈ R.
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(ii) u, v : I × I × R → R are continuous and there exist nonnegative con-
stants αi, βi, pi; (i = 1, 2) such that

|v(t, s, x)| ≤ α1 + β1|x|p1 ,
|u(t, s, x)| ≤ α2 + β2|x|p2 ,

for all s, t ∈ I and x ∈ R.

(iii) ϕ, α, β, γj : I → I are the continuous functions. (j = 1, 2, 3).

(iv)

(k α1 +m1)m2 > 0,

where m1 and m2 are the constants such that

|f(t, 0, 0)| ≤ m1 and |g(t, 0, 0)| ≤ m2

for all t ∈ I.

(v)

[ k(α1 + β1) +m1 + k′] [ k(α2 + β2) +m2 + k′ ] < 1.

(vi)

k′ [(α1 + α2 + β1 + β2) +m1 +m2 + 2k′ ] +

+kM [ k(α1 + β1) +m1 + k′ ] < 1,

where M is the nonnegative constant such that |u(t, s, x)| ≤ M for all
t, s ∈ I and x ∈ [−1, 1].

Theorem 3.1. Under assumptions (i) − (vi), there exists at least one r0 ∈
(0, 1) such that equation (1.1) has at least one solution x = x(t) belonging to
Br0 ⊂ C(I).

Proof. We define continuous function h : [0, 1]→ R such that

h(r) = [ k(α1 + β1r
p1) +m1 + k′r ] [ kr(α2 + β2r

p2) +m2 + k′r ]− r,

where k, k′,mi, αi, βi and pi for i ∈ {1, 2} are the constants given in the
assumptions. Then h(0) > 0 and h(1) < 0 by assumptions (iv) and (v).
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The continuity of h guarantees that there exists the number r0 such that
r0 ∈ (0, 1) and h(r0) = 0.
Now, we shall prove that equation (1.1) has at least one solution x = x(t)
belonging to Br0 ⊂ C(I). We define operators F and G on C(I) in the
following way:

(Fx)(t) = f

(
t,

∫ ϕ(t)

0

v (t, s, x(γ1(s))) ds, x(α(t))

)
,

(Gx)(t) = g

(
t, x(γ2(t))

∫ 1

0

u (t, s, x(γ3(s))) ds, x(β(t))

)
.

From the assumptions, F and G transform space C(I) into itself. Further
let us define operator T on C(I) by the equality

Tx = (Fx)(Gx).

Obviously, T transforms C(I) into itself. Since

f(t, 0, x) = f(t, 0, x)− f(t, 0, 0) + f(t, 0, 0),

we have by (i) that
|f(t, 0, x)| ≤ m1 + k′|x|

for all t ∈ I and x ∈ R. Let us fix x ∈ C(I). Then, using our assumptions
for t ∈ I, we get

|(Fx)(t)|

=

∣∣∣∣∣f
(
t,

∫ ϕ(t)

0

v (t, s, x(γ1(s))) ds, x(α(t))

)∣∣∣∣∣
≤

∣∣∣∣∣f
(
t,

∫ ϕ(t)

0

v (t, s, x(γ1(s))) ds, x(α(t))

)
− f (t, 0, x(α(t)))

∣∣∣∣∣
+ |f (t, 0, x(α(t)))|

≤ k

∫ ϕ(t)

0

|v (t, s, x(γ1(s)))| ds+m1 + k′ |x(α(t))|

≤ k

∫ ϕ(t)

0

(α1 + β1 |x(γ1(s))|p1) ds+m1 + k′ |x(α(t))|

≤ k (α1 + β1‖x‖p1) +m1 + k′‖x‖. (3.1)

Similarly, we derive

|(Gx)(t)| ≤ k‖x‖ (α2 + β2‖x‖p2) +m2 + k′‖x‖ (3.2)
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for all x ∈ C(I) and t ∈ I. By (3.1) and (3.2), for x ∈ Br0 , we obtain

|(Tx)(t)| = |(Fx)(t)||(Gx)(t)|
= [ k (α1 + β1‖x‖p1) +m1 + k′‖x‖ ]×

[ k‖x‖ (α2 + β2‖x‖p2) +m2 + k′‖x‖ ]

≤ [ k (α1 + β1r
p1
0 ) +m1 + k′r0 ]×

[ kr0 (α2 + β2r
p2
0 ) +m2 + k′r0 ]

= h(r0) + r0

= r0

which implies that Tx ∈ Br0 .
Now, we shall prove that operator F is continuous on Br0 . To do this,
consider ε > 0 and any x, y ∈ Br0 such that ‖x− y‖ ≤ ε. Then,

|(Fx)(t)− (Fy)(t)|

=

∣∣∣∣∣f
(
t,

∫ ϕ(t)

0

v (t, s, x(γ1(s))) ds, x(α(t))

)
−

−f

(
t,

∫ ϕ(t)

0

v (t, s, y(γ1(s))) ds, y(α(t))

)∣∣∣∣∣
≤

∣∣∣∣∣f
(
t,

∫ ϕ(t)

0

v (t, s, x(γ1(s))) ds, x(α(t))

)
−

−f

(
t,

∫ ϕ(t)

0

v (t, s, y(γ1(s))) ds, x(α(t))

)∣∣∣∣∣
+

∣∣∣∣∣f
(
t,

∫ ϕ(t)

0

v (t, s, y(γ1(s))) ds, x(α(t))

)
−

−f

(
t,

∫ ϕ(t)

0

v (t, s, y(γ1(s))) ds, y(α(t))

)∣∣∣∣∣
which implies that

|(Fx)(t)− (Fy)(t)|

≤ k

∫ ϕ(t)

0

|v (t, s, x(γ1(s)))− v (t, s, y(γ1(s)))| ds+

+k′ |x(α(t))− y(α(t))|
≤ kw3

r0
(v, ε) + k′‖x− y‖

≤ kw3
r0

(v, ε) + k′ε, (3.3)
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where

w3
r0

(v, ε) = sup {|v(t, s, x)− v(t, s, y)| : t, s ∈ I;x, y ∈ R; |x− y| ≤ ε}

such that R = [−r0, r0]. Notice that, in view of the uniform continuity of
function v on set I × I × [−r0, r0], we have that w3

r0
(v, ε) → 0 as ε → 0.

Thus, above estimate (3.3) shows that operator F is continuous on ball Br0 .
Similarly, we can show that operator G is continuous on ball Br0 . Obviously,
this implies the continuity of operator T on ball Br0 .

Further, we shall show that operators F and G satisfy Darbo condition on
ball Br0 . In order to do this, let us take a nonempty subset X of ball Br0 .
Fix ε > 0 and choose x ∈ X and t1, t2 ∈ I such that |t1 − t2| ≤ ε. Without
loss of generality, we may assume that ϕ(t2) ≤ ϕ(t1). Then, we obtain

|(Fx)(t2)− (Fx)(t1)|

=

∣∣∣∣∣f
(
t2,

∫ ϕ(t2)

0

v (t2, s, x(γ1(s))) ds, x(α(t2))

)
−

− f

(
t1,

∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds, x(α(t1))

)∣∣∣∣∣
≤

∣∣∣∣∣f
(
t2,

∫ ϕ(t2)

0

v (t2, s, x(γ1(s))) ds, x(α(t2))

)
−

− f

(
t2,

∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds, x(α(t2))

)∣∣∣∣∣
+

∣∣∣∣∣f
(
t2,

∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds, x(α(t2))

)
−

− f

(
t1,

∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds, x(α(t2))

)∣∣∣∣∣
+

∣∣∣∣∣f
(
t1,

∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds, x(α(t2))

)
−

− f

(
t1,

∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds, x(α(t1))

)∣∣∣∣∣ .
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Hence,

|(Fx)(t2)− (Fx)(t1)|

≤ k

∣∣∣∣∣
∫ ϕ(t2)

0

v (t2, s, x(γ1(s))) ds−
∫ ϕ(t1)

0

v (t1, s, x(γ1(s))) ds

∣∣∣∣∣
+w1

r0
(f, ε) + k′ |x(α(t2))− x(α(t1))|

≤ k

∫ ϕ(t2)

0

|v (t2, s, x(γ1(s)))− v (t1, s, x(γ1(s)))| ds+

+k

∫ ϕ(t1)

ϕ(t2)

|v (t1, s, x(γ1(s)))| ds+ w1
r0

(f, ε) +

+k′ |x(α(t2))− x(α(t1))| . (3.4)

Then, by (3.4), we have that

|(Fx)(t2)− (Fx)(t1)|
≤ kw1

r0
(v, ε) + kL|ϕ(t1)− ϕ(t2)|+ w1

r0
(f, ε) +

+k′ |x(α(t2))− x(α(t1))|
≤ kw1

r0
(v, ε) + kLw(ϕ, ε) + w1

r0
(f, ε) + k′w (x,w(α, ε)) , (3.5)

where

w1
r0

(v, ε) = sup {|v(t2, s, x)− v(t1, s, x)| : t1, t2, s ∈ I, x ∈ R; |t1 − t2| ≤ ε} ,

w1
r0

(f, ε) = sup {|f(t2, y, x)− f(t1, y, x)| : t1, t2 ∈ I,
x ∈ R, y ∈ [−L,L] ; |t1 − t2| ≤ ε} ,

L = sup{|v(t, s, x)| : t, s ∈ I;x ∈ R}

and

w(αi, ε) = sup{|αi(t2)− αi(t1)| : t1, t2 ∈ I; |t1 − t2| ≤ ε}

for i = 1, 2, 3 such that α1 = ϕ, α2 = α and α3 = x. From (3.5), we get

w(Fx, ε) ≤ kw1
r0

(v, ε) + kLw(ϕ, ε) + w1
r0

(f, ε) + k′w (x,w(α, ε)) . (3.6)

Taking into account the uniform continuity of functions f, v, α and ϕ on the
bounded sets, we can deduce by (3.6) that

w0(FX) ≤ k′w0(X). (3.7)
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In a similar way, we have

|(Gx)(t2)− (Gx)(t1)|

=

∣∣∣∣g(t2, x(γ2(t2))

∫ 1

0

u (t2, s, x(γ3(s))) ds, x(β(t2))

)
−

− g
(
t1, x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds, x(β(t1))

)∣∣∣∣
≤

∣∣∣∣g(t2, x(γ2(t2))

∫ 1

0

u (t2, s, x(γ3(s))) ds, x(β(t2))

)
−

− g
(
t2, x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds, x(β(t2))

)∣∣∣∣
+

∣∣∣∣g(t2, x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds, x(β(t2))

)
−

− g
(
t1, x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds, x(β(t2))

)∣∣∣∣
+

∣∣∣∣g(t1, x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds, x(β(t2))

)
−

− g
(
t1, x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds, x(β(t1))

)∣∣∣∣
≤ k

∣∣∣∣x(γ2(t2))

∫ 1

0

u (t2, s, x(γ3(s))) ds− x(γ2(t1))

∫ 1

0

u (t1, s, x(γ3(s))) ds

∣∣∣∣
+w1

r0
(g, ε) + k′ |x(β(t2))− x(β(t1))|

≤ k

∣∣∣∣[x(γ2(t2))− x(γ2(t1))]

∫ 1

0

u (t2, s, x(γ3(s))) ds

∣∣∣∣+

+k

∣∣∣∣x(γ2(t1))

∫ 1

0

[u (t2, s, x(γ3(s)))− u (t1, s, x(γ3(s)))] ds

∣∣∣∣
+w1

r0
(g, ε) + k′w (x,w(β, ε)) . (3.8)

By (3.8), we derive that

|(Gx)(t2)− (Gx)(t1)|
≤ kMw (x,w(γ2, ε)) + kr0w

1
r0

(u, ε) + w1
r0

(g, ε) + k′w (x,w(β, ε)) , (3.9)

where

w1
r0

(g, ε) = sup {|g(t2, y, x)− g(t1, y, x)| : t1, t2 ∈ I,
y ∈ [−r0M, r0M ], x ∈ R; |t1 − t2| ≤ ε} ,

w1
r0

(u, ε) = sup {|u(t2, s, x)− u(t1, s, x)| : t1, t2, s ∈ I, x ∈ R; |t1 − t2| ≤ ε}
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and M is the nonnegative constant such that |u(t, s, x)| ≤ M for all t, s ∈ I
and x ∈ [−1, 1]. Also,

w(βj, ε) = sup{|βj(t2)− βj(t1)| : t1, t2 ∈ I; |t1 − t2| ≤ ε}

for j = 1, 2, 3 such that β1 = β, β2 = γ2 and β3 = x. From (3.9), we get

w(Gx, ε) ≤ kMw (x,w(γ2, ε)) + kr0w
1
r0

(u, ε) + w1
r0

(g, ε) +

+k′w (x,w(β, ε)) . (3.10)

Since functions γ2, u, g and β are uniform continuous on the bounded sets,
we can obtain by (3.10) that

w0(GX) ≤ (k′ + kM)w0(X). (3.11)

Finally, linking (3.1), (3.2), (3.7), (3.11) and Theorem 2.4, we get that T
satisfies Darbo condition on ball Br0 with constant k̃ such that

k̃ = k′ [ k(α1 + β1r
p1
0 ) +m1 + k′r0 + kr0(α2 + β2r

p2
0 ) +m2 + k′r0] +

+kM [k(α1 + β1r
p1
0 ) +m1 + k′r0] .

Since the inequality

k′ [ k(α1 + α2 + β1 + β2) +m1 +m2 + 2k′ ] + kM [k(α1 + β1) +m1 + k′] < 1

holds by assumption (vi), k̃ < 1 and so T is a contraction on ball Br0 and
has a fixed point in Br0 by Theorem 2.4. Consequently, Eq.(1.1) has at least
one solution in Br0 . This step completes the proof of our theorem.

Note 3.1. Functions u, v, α and β satisfying conditions (iii), (iv) and (v)
of Theorem 3.1 in [9] for a = 1 also satisfy conditions (ii) and (iii) of our
theorem. But, converse of this may not be correct.

4 Examples

In this section, we present some examples verifying the conditions of Theorem
3.1 and not verifying the conditions of Theorem 3.1 in [9].

Example 4.1. Let us take functions f, g : I × R× R→ R defined by

f(t, y, x) =
[ exp(t− 1) + 1 ] sinx

5 + (t− 1)2
+

y

5 + t2
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and
g(t, y, x) =

2 sin(|x|+ t2)

5 + t3
+

y

5 + t2
.

These functions are continuous and satisfy Lipschitz condition with respect
to variables y and x with constants k = 1/5 and k′ = 2/5, respectively. Also,
since

f(t, 0, 0) = 0 and g(t, 0, 0) =
2 sin(t2)

5 + t3
,

we can choose nonnegative constants m1 and m2 as m1 = 0 and m2 = 2/5.
Next, we take

v(t, s, x) =
[ 1 + cos(ts3) ](x2 + s)

3 + s2

and

u(t, s, x) =
sin
√
t+
√
|x|3

5 + ln(1 + s) + s3
.

It is easy to verify that the inequalities

|v(t, s, x)| ≤ 2

3
+

2

3
|x|2 and |u(t, s, x)| ≤ 1

5
+

1

5
|x|

3
2

hold for all t, s ∈ I = [0, 1] and x ∈ R. So, assumption (ii) is satisfied with

α1 = β1 =
2

3
, α2 = β2 =

1

5
, p1 = 2 and p2 =

3

2
.

On the other hand, if we take

α(t) = β(t) =
√
t, ϕ(t) = t2 and γ1(t) = γ2(t) = γ3(t) =

t

2
,

assumption (iii) holds.
Furthermore, since

(k α1 +m1)m2 > 0,

[ k(α1 + β1) +m1 + k′ ] [ k(α2 + β2) +m2 + k′ ] =
44

75
< 1

and

k′ [ k(α1 + α2 + β1 + β2) +m1 +m2 + 2k′ ] +

+kM [k(α1 + β1) +m1 + k′] =
252

375
< 1,

the inequalities in assumptions (iv), (v) and (vi) hold, where

M = sup{|u(t, s, x)| : t, s ∈ I;x ∈ [−1, 1]} =
2

5
.
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Then, Eq.(1.1) has the form

x(t) =

(
[ exp(t− 1) + 1 ] sinx

(√
t
)

5 + (t− 1)2
+

+
1

5 + t2

∫ t2

0

[ 1 + cos(ts3) ]
[(
x
(
s
2

))2
+ s
]

3 + s2
ds

×
2 sin(|x

(√
t
)
|+ t2)

5 + t3
+
x
(
t
2

)
5 + t2

∫ 1

0

sin
√
t+
√∣∣x ( s

2

)∣∣3
5 + ln(1 + s) + s3

ds

 ,(4.1)

where t ∈ [0, 1]. Consequently, by applying Theorem 3.1, we deduce that
Eq.(4.1) has at least one solution x ∈ C[0, 1].
Since there is no constants α1, β1, α2 and β2 satisfying the inequalities

|v(t, s, x)| ≤ α1 + β1|x| and |u(t, s, x)| ≤ α2 + β2|x|

for all t, s ∈ I = [0, 1] and x ∈ R, if we take

γ1(t) = γ2(t) = γ3(t) = ϕ(t) = t, α(t) = β(t) =
√
t,

the result in [9] is inapplicable to the integral equation

x(t) =

(
[ exp(t− 1) + 1 ] sinx(

√
t)

5 + (t− 1)2
+

+
1

5 + t2

∫ t

0

[ 1 + cos(ts3) ][(x(s))2 + s]

3 + s2
ds

)
×

×

(
2 sin(|x(

√
t)|+ t2)

5 + t3
+

x(t)

5 + t2

∫ 1

0

sin
√
t+
√
|x(s)|3

5 + ln(1 + s) + s3
ds

)
.

Also, functions α and β don’t hold the inequalities in condition (iv) of The-
orem 3.1 in [9].

Example 4.2. If we take

f(t, y, x) = a(t) + y, g(t, y, x) = 1, ϕ(t) = γ1(t) = α(t) = t and u(t, s, x) = 0

for all t, s ∈ I; x, y ∈ R, then Eq.(1.1) is reduced to well known nonlinear
Volterra integral equation

x(t) = a(t) +

∫ t

0

v(t, s, x(s))ds, (4.2)
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where function a : I → R is continuous. Also, we assume that there exist
nonnegative constants α1, β1 and p1 such that the inequality

|v(t, s, x)| ≤ α1 + β1|x|p1 (4.3)

holds for all t, s ∈ I and x ∈ R.
The theory of above equation (4.2) is well developed in [1, 4, 5, 13, 14]. For
this specific choice of f , g, ϕ, γ1, α and u, assumptions (i), (ii) and (vi) are
satisfied with

k = 1, k′ = 0, α1, β1, α2 = β2 = 0, m1 = ‖a‖, m2 = 1 and M = 0.

Assumption (iii) already holds for ϕ, γ1, α and any continuous functions
β, γ2, γ3 : I → I.
Additionally, we assume that the inequalities in conditions (iv) and (v) which
are equivalent to

α1 + ‖a‖ > 0 (4.4)

and

α1 + β1 + ‖a‖ < 1, (4.5)

respectively are verified.
Then, we deduce from Theorem 3.1 that there exists at least one number
r0 ∈ (0, 1) and Eq.(4.2) has at least one solution x = x(t) belonging to
Br0 ⊂ C[0, 1].
We put

v(t, s, x) =
15t2 + 4 sin

(
x

1+x2

)
19 + exp(1− t)

, a(t) =
1

t2 + 25
.

The inequality

|v(t, s, x)| ≤ 15

20
+

4

20

∣∣∣∣sin( x

1 + x2

)∣∣∣∣
≤ 3

4
+

1

5

∣∣∣∣ x

1 + x2

∣∣∣∣
≤ 3

4
+

1

5
|x|

holds for all t, s ∈ I and x ∈ R.
So (4.3), (4.4) and (4.5) are satisfied with

α1 =
3

4
, β1 =

1

5
, p1 = 1 and ‖a‖ =

1

25
.



Vol. LII (2014) On the Solutions of a Class of Nonlinear Integral Equations...137

Then, our integral equation takes the form

x(t) =
1

t2 + 25
+

∫ t

0

15t2 + 4 sin
(

x(s)
1+x2(s)

)
19 + exp(1− t)

ds (4.6)

which has at least one solution x ∈ Br0 ⊂ C[0, 1].
On the other hand, the inequality given in assumption (vi) of Theorem 3.1
in [9] doesn’t hold with

k = 1, α̃ =
3

4
, β̃ =

1

5
, a = 1, c = 1 and d = 0,

since
[ k(α̃ + β̃r)a+ (c+ dr)][ k(α̃ + β̃r)ra+ (c+ dr)] > r

for all r ∈ (0,∞). Hence, the result in [9] is inapplicable to integral equation
(4.6).

Example 4.3. Let us define

f(t, y, x) = 1, g(t, y, x) = a(t) + y, γ2(t) = γ3(t) = β(t) = t and v(t, s, x) = 0

for all t, s ∈ I and x, y ∈ R, where function a : I → R is continuous.
It is known from [9] that function u given as

u(t, s, x) =

{
0, s = 0, t ≥ 0, x ∈ R
t

t+s
φ(s)x, s 6= 0, t ≥ 0, x ∈ R

is continuous on I × I × R. Here, φ : I → R is continuous and φ(0) = 0.
For these functions, Eq.(1.1) has the form

x(t) = a(t) + x(t)

∫ 1

0

t

t+ s
φ(s)x(s)ds (4.7)

which is related with the Chandrasekhar equation considered in [2, 6, 10–12].
In this example, f and g satisfy Lipschitz condition with respect to variables
y and x with constants k = 1 and k′ = 0, respectively. Also, since

f(t, 0, 0) = 1, g(t, 0, 0) = a(t), v(t, s, x) = 0 and |u(t, s, x)| ≤ ‖φ‖ |x|

for all t, s ∈ I and x ∈ R, we can choose nonnegative constants m1, m2, α1,
β1, α2, β2 and M as

m1 = 1, m2 = ‖a‖, α1 = β1 = α2 = 0, β2 = ‖φ‖ and M = ‖φ‖.
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Therefore, conditions (i) and (ii) are satisfied. It is obvious that condition
(iii) is satisfied for β, γ2, γ3 and any continuous functions ϕ, γ1, α : I → I.
The inequalities in conditions (iv), (v) and (vi) can be expressed as

‖a‖ > 0, (4.8)

‖a‖+ ‖φ‖ < 1 (4.9)

and

‖φ‖ < 1, (4.10)

respectively. If (4.8) and (4.9) which implies (4.10) hold, we have by Theorem
3.1 that there exists at least one number r0 ∈ (0, 1) and Eq.(4.7) has at least
one solution x = x(t) belonging to Br0 ⊂ C[0, 1].
If we take

a(t) =
et−1

sin2(t− 1) + 25
, φ(t) =

7t

10
,

then (4.8) and (4.9) hold which imply that the equation

x(t) =
et−1

sin2(t− 1) + 25
+

7t

10
x(t)

∫ 1

0

s

t+ s
x(s)ds (4.11)

has at least one solution x ∈ C[0, 1].
But, the inequality given in assumption (vi) of Theorem 3.1 in [9] doesn’t
hold for constants

k = 1, α̃ = 0, β̃ =
7

10
, a = 1, c = 1 and d = 0,

since
[ k(α̃ + β̃r)a+ (c+ dr)][ k(α̃ + β̃r)ra+ (c+ dr)] > r

for all r ∈ (0,∞). So, the result in [9] is inapplicable to integral equation
(4.11).

Example 4.4. Let us consider the following nonlinear integral equation of
the form

x(t) =
ln(t+ e− 1) sinx(t3)

t+ 19
+

+
1

t+ 4

∫ t

0

(
4s sinx(s)

20s2 + 5
+

10 ln(s+ e− 1)

s+ 3

)
ds. (4.12)
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Put
f(t, y, x) =

ln(t+ e− 1) sinx

t+ 19
+

y

t+ 4
, g(t, y, x) = 1,

v(t, s, x) =
4s sinx

20s2 + 5
+

10 ln(s+ e− 1)

s+ 3
, u(t, s, x) = 0,

γ1(t) = ϕ(t) = t, α(t) = t3

and

k =
1

4
, k′ =

1

20
, m1 = 0, m2 = 1, α1 =

5

2
, β1 =

1

5
, α2 = 0, β2 = 0,M = 0.

It is easy to show that all of the conditions of Theorem 3.1 hold. Therefore,
Theorem 3.1 guarantees that there exists at least one r0 ∈ (0, 1) such that
Eq.(4.12) has at least one solution x = x(t) belonging to Br0 ⊂ C[0, 1].
On the other hand, the inequality given in assumption (vi) of Theorem 3.1
in [9] doesn’t hold for constants

k =
1

4
, α1 =

5

2
, α2 = 0, β1 =

1

5
, β2 = 0, a = 1,

c1 = 0, c2 = 1, d1 =
1

20
and d2 = 0.

Hence, the result in [9] is inapplicable to integral equation (4.12).
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