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ABSTRACT 
 
In this paper, the main work is focused on designing and simplifying the orbit determination algorithm 
which will be used for Low Earth Orbit (LEO) navigation. The various data processing algorithms, state 
estimation algorithms and modeling forces were studied in detail, and simplified algorithm is selected to 
reduce hardware burden and computational cost. This is done by using raw navigation solution provided by 
GPS Navigation sensor. A fixed step-size Runge-Kutta 4th order numerical integration method is selected 
for orbit propagation. Both, the least square and Extended Kalman Filter (EKF) orbit estimation algorithms 
are developed and the results of the same are compared with each other. EKF algorithm converges faster 
than least square algorithm. EKF algorithm satisfies the criterions of low computation burden which is 
required for autonomous orbit determination. Simple static force models also feasible to reduce the 
hardware burden and computational cost.     
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1. INTRODUCTION 
 

Orbit determination is the process of determining the best estimate of the state of a spacecraft, whose 
initial state is unknown, from observations influenced by random and systematic errors, using a 
mathematical model that is not exact. In this work above-mentioned procedure will be referred to as the 
orbit determination (Taply et al., 2004). There are various techniques available for satellite position 
measurement at given epoch time. These include one way technique which is based on the transmittal of a 
signal by a satellite or ground-based transmitter that is received by a separate instrumentation. The 
transmitted signal propagates along a path and arrives at a point instrumented to receive the transmitted 
signal. This way one can calculate range and range rate between two points. In two way method it uses both 
uplink and downlink path to calculate the range and range rate. Satellites Laser Ranging (SLR) technique 
comes under two way method.  However ground based tracking carries extensive cost burden in spacecraft 
mission. In order to make the satellite orbit control system autonomous and reduce the need for ground 
intervention there is a need for on-board availability of continuous and accurate knowledge of the satellite 
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orbit. From this information, position and velocity vector of an orbiting LEO spacecraft is determined as a 
function of time (Parkinson and Spilker, 1996). The measurement principle in its simplest form is illustrated 
by Fig. 1 where ��� ��� ��� �� are the pseudoranges of the respective GPS satellites and �	
� is the geocentric 
distance of LEO. Each GPS satellite sends its own positional information in the form of navigation data.  
The code measurements of at least four GPS satellite observed at observation time t by the on-board GPS 
navigation sensor, are used to determine geocentric position vector ��	
� of the LEO’s centre of mass.  

 
An efficient Low Earth Orbit (LEO) precise orbit determination algorithm has presented by (Bock et al., 

2002). They used IGS orbits and precise clocks for the GPS satellites and the positions are generated by the 
combination of code derived positions and phase derived position differences. Fitting an orbit based on a 
physical model to the positions promises to complement a procedure that meets the requirements regarding 
precision and processing speed. The positions estimated from code observations and position differences 
estimated from phase observations may eventually be used as “pseudo-observations” to fit an orbit based on 
the physical model using a least squares adjustment. A new onboard orbit determination algorithm based on 
the unscented Kalman filter (UKF) has been successfully developed by (Choi et al., 2010) for application to 
spaceborne GPS receivers. The perturbations due to 40x40 geopotential, the gravity of the Sun and Moon, 
atmospheric drag, and solar radiation pressure were employed to develop the precision orbit propagation for 
onboard processing. The 7(8)th-order Runge–Kutta numerical integration was applied for orbit propagation. 
The Cowell method was applied for modeling orbit motion. Researcher (Pardal et al., 2009) determined the 
orbit of an artificial satellite and analyzed its implications, using least squares algorithms through sequential 
given rotations as the method of estimation, and data of the GPS receivers. In this paper, an algorithm to 
determine onboard the satellite orbit in real-time using the GPS system and Kalman filtering is developed. It 
used a simplified and compact model with low computational cost. The extended Kalman filter (EKF) 
estimates the state vector, composed of the position and velocity components, bias, drift, and drift rate of the 
GPS receiver clock. An algorithm for real-time and onboard orbit determination applying the Extended 
Kalman Filter (EKF) method is developed by (Chiaradia et al., 2013). The minimum set of to-be-estimated 
states to reach the level of accuracy of tens of meters is found to have at least the position, velocity, and user 
clock offset components. The dynamical model is assessed through several tests, covering force model, 
numerical integration scheme and step size, and simplified variational equations. The measurement model 
includes only relevant effects to the order of meters.  Based on the same principle a simple but fairly 
accurate algorithm is developed to determine the LEO satellite’s orbit using raw navigation solution 
provided by GPS navigation sensor.  

 
Figure 1. Concept of Autonomous Orbit determination 

 

82



2. METHODOLOGY 
 
 For determining initial orbit, one should know the position of satellite in an orbit w. r. t. the elapsed 
time, 
 
 
�, or conversely, how long it takes to go from one point in an orbit to another. To solve this, 
Kepler introduced the quantity �, called the mean anomaly, which is the fraction of an orbit period that has 
elapsed since perigee as given in Eq. (1).  The mean anomaly equals the true anomaly for a circular orbit. 
 � 
�� � �	
 
 
�� (1) 
  
where, ��  is the mean anomaly at time 
�  and �  is the mean motion, or the average angular velocity 
determined from the semi-major axis � of the orbit as given in Eq. (2); 
 

� � �����  

 �� � Product of gravitational constant and mass of the body                         (2) 

                                                                      
Mean anomaly is a function of eccentric anomaly (�) given in the Eq. (3); 
 � � � 
 � ��� � where, � is orbital eccentricity                                                               (3) 

At any time in its orbit, the magnitude of a spacecraft's position vector, i.e. its distance from the primary 
body (�), latitude of the satellite (�) and longitude of the satellite (�) can be calculated from the following 
Eq. (4); 

� � �	 
 �!� " �#$%& 
 

' � ���()*��� +, ��� &-                                                                                          (4) 

� � ���() ./�� '/�� + 0  

 
where, +� '� & are inclination angle, latitude and true anomaly of the satellite, length � refers to a prime 
meridian specified in the inertial reference frame of the standard epoch J2000.0. 
 
From 	�� '� ��  of the satellite, position vector components 1� 2� 3  in Cartesian coordinate system as a 
function of time (
) is obtained from Eq. (5) as follows; 
 1 � � 45� ', 45��  2 � � 45� ', ��� �                                                                                 (5) 3 � � ����  

Then ��	
� � 1	
�6�" 2	
�7� " 3	
�89�  is the position vector of the satellite and the magnitude of ��  is :1! " 2! " 2!,,,,.  
The perturbations due to the factor ;! (flattening coefficient of the Earth) is only considered for 

determining the reference orbit from initial measurements. Longitude of ascending node, argument of 
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perigee and mean motion are mostly affected. The factor ;! is the flattening coefficient of the Earth and is 
equal to 0.0010827 (Parkinson and Spilker, 1996). 

The accuracy of the orbital elements is directly dependent upon the accuracy of velocity vector 
components. To determine position components as a function of time, the velocity vector components are 
numerically integrated. In the present paper, the acceleration vectors are numerically integrated with the 
help of fixed step size 4th order Runge-Kutta method for finding out the velocity vector components 
(Parkinson and Spilker, 1996).  
        

2.1.  Numerical integration of the equation of motion 
              
 The satellite dynamic model used for the satellite orbit propagation is given in Eq. (6); 
 �<�	
� � =�� ��	
� ",>99�	
�             (6) 

                            
where,,�<�	
� is the acceleration vector, ��	
� is the orbital position vector and >99�	
� is vector of the process 
noise, which is assumed to be zero for calculation simplicity. The discrete-time measurements which are 
considered for the present study include position and velocity vector obtained from Oceansat2 GPS 
navigation sensor. 

The zonal perturbations ;! , ;�  and ;?  are considered for simulations. The main deviation from central 
gravitational field is caused by dynamic flattening of the Earth. In the Geodetic Reference System 1980 
(GRS80), normal field of the flattening coefficient is represented by term ;!= 0.001082. Similarly higher 
order flattening coefficients ;� and ;? are given as ;�= -0.0000025323 and ;?= -0.0000016204 (Parkinson 
and Spilker, 1996).    

 The acceleration components 1,< � 2<and 3< of satellite dynamic model with term ;! are given in Eq. (7) as 
discussed in (Zarchan, 2005, Vallado and McClain, 2007); 

 

1< � 
=1�� @ " ;! ABC� D
! EF G 
 H 3!�!I " ;� ABC� D

� HF GE 
 J 3!�!I 3� 
 ;? ABC� D
? HK GE 
 LF 3!�! " ME 3?�?IN  

2< � 
=2�� @ " ;! ABC� D
! EF G 
 H 3!�!I " ;� ABC� D

� HF GE 
 J 3!�!I 3� 
 ;? ABC� D
? HK GE 
 LF 3!�! " ME 3?�?IN          

(7) 

3< � 
=3�� @ " ;! ABC� D
! EF GE 
 H 3!�!I " ;� ABC� D

� HFGM 
 J 3!�!I 3�N " =�! ,;� ABC� D
� EF,

" =3�� ,;? ABC� D
? HK G H 
 JO 3!�! " ME 3?�?I 

 

 

where, = is the earth gravitational constant, BC  is the Earth’s radius, and � is the magnitude of position 
vector. To update the state vector, Eq. (7) is numerically integrated using Runge-Kutta 4th order fixed step 
size method. Least square differential correction and EKF are used to generate the optimal state estimates of 
the satellite orbit.     

Atmospheric drag is the third most dominant force acting on a low Earth orbiting satellite (depending 
on the altitude in low Earth orbit), after the forces due to central body and oblateness of the Earth. For 
satellites orbiting at higher altitudes, radiation pressure due to the Sun as well as third body effects becomes 
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significant and dominant as well. Apart from the undesirable effects of satellite drag, other applications such 
as aerobraking and space tethers require an accurate model of the atmosphere for high accuracy solutions. 
The three main areas under which drag is studied are for orbit determination under the influence of drag, 
satellite lifetime estimation, and to determine the physical properties of the upper atmosphere.  

When a satellite encounters atmospheric molecules, it experiences a retarding force, the drag force, due 
to momentum transfer from the latter. This results in a loss of energy of the satellite and thus drag is a non-
conservative force. Other non-conservative forces acting on the satellite include the radiation forces due to 
the Sun, Earth albedo, and Earth infrared. The effect of the drag is to reduce the semimajor axis (due to loss 
of energy) and the eccentricity (making it less elliptical). Other orbital elements are also affected by drag but 
the effects are periodic in nature. Drag also results in some coupling effects with the aspherical potential.  

The need for a rigorous model of the effects of atmospheric perturbations requires knowledge in the 
fields of molecular chemistry, thermodynamics, aerodynamics, hypersonics, meteorology, electro-
magnetics, planetary science, and orbital mechanics. Thus, study of astrodynamics in the presence of the 
atmosphere is very difficult. Nevertheless, accurate determination of atmospheric properties is essential for 
satellite drag studies (Degnan and Pavlis, 1994).  

The acceleration experienced by a satellite is given by the following Eq. (8) which relates the 
acceleration with atmospheric properties, geometrical properties of the satellite, and the relative velocity 
vector of the satellite.  

 

��PQRS � 
 FTUVW �XQC�! X�QC�YX�QC�Y  
(8) 

                                                          
The first quantity in the above drag equation TU  is the coefficient of drag, a dimensionless quantity 

which quantifies the resistance of a body. TU , depends on the temperature and composition of the 
surrounding atmosphere, surface properties of the satellite including its temperature, surface geometry, and 
orientation. The drag coefficient for a flat plate is about 2.2 and about 2.0 to 2.1 for spheres, in the upper 
atmosphere (Amaral et al, 2007). TU,is usually estimated up to three significant digits. � is the atmospheric 
density, which is the hardest to estimate. Several atmospheric models exist which are used to estimate 
neutral density, whose details will be discussed in future sections. V is the cross sectional area that is normal 
to the velocity vector. For a satellite whose attitude and geometry are known, determining V  may be 
relatively easy. However, if the attitude of an aspherical satellite is not known, then determining the cross 
sectional area becomes difficult, especially if the satellite’s attitude is rapidly changing, say a tumbling 
satellite. W is the mass of the satellite. The mass may be constant or changing during the mission depending 
on whether the onboard propellants (if any) are being consumed. X�QC�,is the velocity vector of the satellite 
relative to the atmosphere and XQC�,is its magnitude. 

The quantity TUVZW  is called the ballistic coefficient (BC) is another measure of a satellite 
susceptibility to drag. Higher BC means lower drag is experienced by the satellite. The atmosphere is not 
stationary in the inertial frame but rotates with the Earth. However, the rotational rate is not the same as that 
of the Earth at higher altitudes but rather rotates with a profile; so the layer next to the surface has the same 
rotational speed as that of the Earth, and the ones above gradually decrease in speed. Often, this lag is 
ignored and the atmosphere layer at the satellite altitude is assumed to rotate at the same rate as the surface 
of the Earth. Using this approximation, the expression for the relative velocity of the satellite in the inertial 
frame is given in Eq. (9). 
 

X�QC� � [��[
 
 \99�] ^ �� � .[1[
 " \]2,,, [2[
 
 \]1,,, [3[
0
_
 

(9) 
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In the above equation, ��,is satellite position vector with 1� 2� and 3 components,  �99�],is the angular velocity 
vector of the Earth and �],is its magnitude.  
 

2.2.  Simplified atmospheric density model 
 

Purpose of present research was focused on to select the simplified atmospheric density model which 
will be suitable for hardware implementation. There are various upper atmospheric models are in use like, 
CIRA-72, CIRA-86, Jacchia-71, Jacchia-77, MISS-86, MISS-90, and DTM-90. However all are very 
complicated numerical methods and depends upon daily or monthly Sun flux and geomagnetic data which is 
not suitable for onboard processing. Due to these reasons the simplified analytical atmospheric density 
model is selected for present research. The details of the simplified analytical atmospheric density model are 
given in following paragraphs.       

If the balanced atmosphere is considered, according to hydrostatics the density distribution is 
approximately a form of exponential given in Eq. (10)):  
 

� � ���`(	abccd(ae�Zfg (10) 

 
Where �� is the atmospheric density of the reference spherical surface at hijjk � h�, hijjk  is the altitude 
measured from Earth’s surface, h�,is the base altitude, and l is the scale height at base altitude. Table 1 
explains the calculated values of �� with respect to the altitude measured from earth surface (Yunck et al., 
1994).   

 
Table 1: (Part one): Nominal density (��) with respect to the altitude measures from earth surface 

 
Altitude measured from 
Earth Surface (hijjk) [km] 

Base  
Altitude(h�) [km] 

Nominal density 
(��) [kg/m^3] 

Scale Height (H) at 
base altitude [km] 

0-25 0.00 1.23 7.25 
25-30 25.00 3.899*10^-2 6.35 
30-40 30.00 1.774*10^-2 6.68 
40-50 40.00 3.972*10^-3 7.55 
50-60 50.00 1.057*10^-3 8.38 
60-70 60.00 3.206*10^-4 7.71 
70-80 70.00 8.770*10^-5 6.55 
80-90 80.00 1.905*10^-5 5.80 
90-100 90.00 3.396*10^-6 5.38 
100-110 100.00 5.297*10^-7 5.88 
110-120 110.00 9.661*10^-8 7.26 
120-130 120.00 2.438*10^-8 9.47 
130-140 130.00 8.484*10^-9 12.64 
140-150 140.00 3.845*10^-9 16.15 
150-180 150.00 2.070*10^-9 22.52 
180-200 180.00 5.464*10^-10 29.74 
200-250 200.00 2.789*10^-10 37.11 
250-300 250.00 7.248*10^-11 45.55 
300-350 300.00 2.418*10^-11 53.63 
350-400 350.00 9.518*10^-12 53.30 
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Table 1: (Part two): Nominal density (��) with respect to the altitude measures from earth surface 
 

 
2.3.Effect of Atmospheric drag  

 
With the values mentioned in the Table 1 the atmospheric density (�) is calculated with the help of Eq. 

(10). These atmospheric density values are then future used to calculate the acceleration vector due to 
atmospheric drag coefficient using Eq. (8). To see combined effect of the J2 and atmospheric drag, the Eq. 
(7) is modified to Eq. (11);  

 

1< � 
=1�� @ " ;! EF ABC� D
! G 
 H 3!�!IN " �[��mn1  

2< � 
=2�� @ " ;! EF ABC� D
! G 
 H 3!�!IN ",�[��mn2 

  

(11) 

3< � 
=3�� @ " ;! EF ABC� D
! GE 
 H 3!�!IN ",�[��mn3  

 �PQRSno , �PQRSnp , and �PQRSnq  are the 1� 2�  and 3  components of the acceleration vector generated by 
atmospheric drag.  

 
Equations (11) which represents the equations of motion of satellite with ;! and atmospheric drag are then 
numerically integrated using Runge-Kutta 4th Order numerical integration method. Code for the same is 
written in MATLAB.  
            

2.4.  Calculation of Orbital Elements from position and velocity vector 
 

Numerical integration of equation of motion gives the instantaneous position vector and velocity vector 
(i.e. state vector) with respect to time. With the help of state vector data, the instantaneous orbital elements 
are calculated (Grewal et al.,2007). The details of orbital elements calculations are given below; 

 

i. Semi-major axis(a) 
 

Semi-major axis of an orbit is calculated using Eq. (12) 

Altitude measured from 
Earth Surface (hijjk) [km] 

Base  
Altitude(h�) [km] 

Nominal density 
(��) [kg/m^3] 

Scale Height (H) at 
base altitude [km] 

400-450 400.00 3.725*10^-12 58.52 
450-500 450.00 1.585*10^-12 60.83 
500-600 500.00 6.967*10^-13 63.82 
600-700 600.00 1.454*10^-13 71.84 
700-800 700.00 3.614*10^-14 88.67 
800-900 800.00 1.170*10^-14 124.64 
900-1000 900.00 5.245*10^-15 181.05 
1000- 1000.00 3.019*10^-15 268.00 
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 � � =F=� 
 X! 

 

, where �  and X  is a magnitude of 
position and velocity vector respectively 

 
(12) 

ii. Eccentricity vector (��) 
 

Eccentricity vector, which norm is equal to orbit eccentricity,�, is calculated using Eq. (13) 
 

�� �  = rsX! 
 =�t �� 
,	�� u X��X�v , where  �� and X� is a position and 
velocity vector respectively, ‘u’ is 
a symbol of dot product 

 
(13) 

 

iii. Orbit Inclination (i) 
 

Orbit Inclination is calculated using Eq. (14) 
 

+ � 45�() w89� u x�yzx�z  

 

, where 89� is unit vector and x� � �� ^ X�, is angular 
momentum. 

 

 
(14) 

iv. Argument of Perigee (\) 
 

Argument of Perigee is calculated using Eq. (15) 
 

\ � �9� u ��Y�9���Y 
 

, where,,,�9� � w�9� ,^,��yz��z   is  node vector and ��  is 

eccentricity vector, 89� is unit vector 

 
(15) 

  

v. Longitude of ascending node (�) 
 

Longitude of ascending node is calculated using Eq. (16) 
 

� � 45�() .�oY�9�Y0 
 

, where �o,is a x component of node vector.  
 

 
(16) 

 
vi. True anomaly (&) 

 
True anomaly is calculated using Eq. (17) 
 
 

& � 45�() G@ � G�	 
 �!�� 
  INI 

 

 
(17) 
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With the help of above formulae (Eq. 12 to Eq. 17) the six orbital elements (�, �, +, �, \ and &) are 
calculated. A software routine for the same is developed in MATLAB. 
       

2.5.  Least square implementation 
 

The basic principle of the method of least-squares is that the best estimate of the state is the estimate 
which minimizes the sum of the squares of the residuals. The satellite dynamic model used is given in Eq. 
(7). The measurement model used in this process is given in Eq. (18);  
 

                 3�� � {9��w|99�	
��y " &�� 
 

  
k=1, 2, 3….                                                                                      (18) 

 
Where,  3��, is the vector of measurements, |99�	
�� is the state vector of the system,,{9�� , differentiable 
function and &�� is the measurement noise vector.  
The residual is defined as given in Eq. (19) 
 &�� � 3�� 
 {9��	|99�	
���        (19) 
 
The measurement matrix for the same is calculated from Eq. (20), 
 

l} � ~�{�9999�	|99�	
��� 
���	|99�	
��� �
|99�	����|99��Z���

 

 

(20) 

l},is the measurement information matrix also known as Jacobian matrix, |99��Z�() is the state from k-1 to 
kth time instant. 

The state transition matrix (����()) is used to propagate covariance matrix is given by Eq. (21), (Grewal 
et al., 2007, Gomes et al., 2007); 

 ����() � � " �	
�()�� 
 

(21) 

Where �	
�()� � .O�^� ��^�;�^� O�^�0 and ‘T’ denotes the matrix transpose.          

               
Where, ;�^� is Jacobian coefficient matrix given in Eq. (22). 
 
 

;�^� � �E=1!�(� 
 =�(� E=12�(� E=13�(�E=21�(� E=2!�(� 
 =�(� E=23�(�E=31�(� E=32�(� E=3!�(� 
 =�(�� 
 

 
(22) 

 
In least square differential correction approach, the epoch (reference point from which time is measured) 

state estimate is computed after processing full set of measurements (Xu, 2007). Due to non-linear relation 
between the epoch state vector and the modeled measurement, multiple iterations are required to compute 
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epoch state estimate. This increases hardware storage capacity requirements. Due to this fact, the system 
hardware carries unnecessary computational as well as power budget burden.  

 
2.6.  EKF implementation 

 
To avoid computational as well as power budget burden, EKF method is selected for orbit estimation due 

to its recursive in nature (Grewal et al., 2007). It uses sequential process to update the estimates with new 
measurement. Flow chart for EKF based orbit estimation is shown in Fig.2. To implement EKF some initial 
assumptions are needed to fulfill the filter’s requirement. To start the EKF process, it requires initial state 
estimate and initial state error covariance matrix. The initial state vector |99�	
�� of the satellite dynamic 
model is given by Eq. (23); 

 |99�	
�� � *1,,2,,3,Xo,,Xp,Xq-,�^);             (23) 
 

The state vector |99�	
�� includes satellite position and velocity vectors.   
 
 

Figure 2. Flow chart for EKF based orbit estimation 

Acquire a priori state and covariance estimates at 
� set,8 � O, i.e initialization 
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Calculate expected measurement {�  and partial derivatives of {�  with respect to  |99�	
�� 
Propagate process noise covariance matrix �}() 

Propagate error covariance matrix Pk-1(tk) 

Calculate gain matrix �} 

Update |99�	
�� to become kth state estimate 

Update error covariance matrix Pk 

State vector propagation to any time of interest 

Last observation? 
 

Y 

N 
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A diagonal apriori covariance matrix �}()  with standard deviations (� ) of 10 m (position), 0.1 m/s 
(velocity), is assumed. With these assumptions the apriori covariance matrix �}()  is given by Eq. (24); 
 �}() � [+�m*�o!,,�p!,,�q!,,���! ,,���! ,,���! ,-�^�   

(24) 
 
To cope with deficiencies of the employed propagation model, a fixed diagonal process noise matrix �}() is 
considered in the time update of the covariance matrix as given in Eq. (25); 
 �}Z}() � ����()�}()�_���() " �}() 
 

(25) 

Representative process noise values used in the present application are (10−3m)2 (position), (10−6 m/s)2 
(velocity).   

The state transition matrix (����() ) shown in Eq. (25) is computed. The actual measurements are 
collected from GPS Navigation sensor and modeled using Eq. (18). With the help of �}Z}()� l}  and �},parameters Kalman gain �} is calculated using the Eq. (26), 

            �} � ,�}Z}()l}�`l}�}Z}()l}� " �}g() 
 

 
(26) 

The Kalman Gain is used as feedback for correcting state estimates,  Rk is measurement noise covariance 

matrix which is,,in general a Gaussian zero-mean noise and the correction vector �|�99��,,is obtained from Eq. 
(27); 
 �|�99�� � �} �3�� 
 {9�� s|�99��Z�()t� 
 

(27) 

And new predicted error covariance �} is obtained from Eq. (28); 
 �} � 	� 
 �}l}��}Z}()	� 
 �}l}�� " �}�}�}� 
 

                                                                                  (28) 

In this approach, EKF processes a single scalar or vector measurement at a time and yields sequential state 
estimate at the measurement times. 
 

2.7.  GPS data processing 

There are two types of GPS codes which are transmitted by the GPS satellite vehicle. One of them (P-
code) provides precise positioning with an accuracy of approximately few tens of meters. This code can 
only be used by a receiver with access to the encryption key. This code is only for military users. The 
second code is available to any commercial user. This code is known as Coarse/Acquisition (C/A) code. 
This code is discussed here.  

Each satellite transmits two carrier signals. One is centered at 1575. 42 MHz (known as L1 carrier) uses 
Phase Shift keying (PSK) to modulate both C/A and P-code onto the carrier. The other signal (known as the 
L2 carrier) is centered at 1227.60 MHz and uses PSK to modulate P-code onto the carrier. L1 carrier is the 
signal used by the commercial receivers. It is modulated with 1.023 MHz Pseudo-Random noise (PRN) 
code which is unique to each satellite. Each GPS satellite transmits the Navigation Message through C/A 
code. The C/A codes from at least four GPS satellites are required to calculate the user receiver position in 
Earth Centered Earth Fixed (ECEF) coordinate system (Gomes et al., 2007).   
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2.7.1. GPS Navigation Solution 

 
It is stated earlier that minimum four GPS satellites are must be in view for the receiver to determine to 

3-dimentional position (Fig.1). This is because there are four unknowns in the set of four navigation 
equations. Therefore, to solve for user position and time, we need to solve the following simultaneous 
equations Eq. (29) (Amaral et al, 2007, Gomes et al., 2007). 

 �) � :	�) 
 1�! " 	�) 
 2�! " 	�) 
 3�! " # u  
 
 

 
 

  
(29) �! � :	�! 
 1�! " 	�! 
 2�! " 	�! 
 3�! " # u  
 

 �� � :	�� 
 1�! " 	�� 
 2�! " 	�� 
 3�! " # u  
 
 �? � :	�? 
 1�! " 	�? 
 2�! " 	�? 
 3�! " # u  
 
 �)� �!� ��,��¡,,�?, are the pseudo-ranges to each of the satellites. A pseudo-range is a measurement of the 
distance between the satellite and the receiver.  �¢� �¢£ �¢,for i=1,2,3,4 are the coordinates of the satellites in the Earth Centered Earth Fixed, WGS-84 
coordinate reference frame, ,1, 2, 3 are the receiver WGS-84 coordinates, #, � ,F¤¥¥J¥F, ^  O¦ (speed of light) m/s,  
 is the receiver clock offset from GPS time (satellite time). 
 
By linearizing Eq. (29) , one can get the observation vector (i.e. receiver position 1� 2� 3) and clock bias  
. 
GPS satellite sends data through navigation message in frames to GPS receiver. These data are in spherical 
coordinates and required to transform into Cartesian coordinates.   

 

2.7.2. GPS satellite navigation message 
 

The navigation message includes Almanac data, ephemeris data, timing data, ionospheric delay data and 
health data of the satellite. The information in the navigation message has basic five frames. Each frame is 
subdivided into five 300-bit sub-frames and has 10 words of 30 bit. Out of above mentioned frames, the 
Satellite Ephemeris data, ionospheric data frame and satellite timing data frame are of interest for the 
present work.  A detailed description of all information contained in the navigation message is beyond the 
scope of this text. 

The sub-frame of navigation message contains the ephemeris data, which is used to determine the 
precise satellite position and velocity required by the navigation solution. This ephemeris data is valid over 
a relatively short period of time (several hours), and applies only to the satellite transmitting it. The 
components of the ephemeris data are given in (Xu, 2007, Grewal et al., 2007). 
 

2.7.3. Calculation of ECEF coordinates of the GPS satellite from Ephemeris data 
 

The ephemeris data including the following elements will be extracted from navigation message and 
then further used to compute the GPS satellite position in the form of Earth Centered Earth Fixed (ECEF) 
coordinate frame using following formulas given in Eq. (30) as discussed in (Xu, 2007).    
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With the help of above mentioned algorithm the kth GPS satellite position in ECEF coordinate frame is 
determined using Eq. (31). 
 �� � 1� 45��� 
 2� 45� +� ����� 
 

ECEF X coordinate  
 

(31) �� � 1� 45���"2� 45� +� 45��� 
 

ECEF Y coordinate 

�� � 2� ��� +� 
 

ECEF Z coordinate 

Where 1�� 2� are the GPS satellite positions in the orbital frame.  Eq. (31) converts satellite position from 
orbital frame to ECEF frame. A software routine for the same is developed in MATLAB.  
 
 

3. RESULTS AND DISCUSSION 
 

In this section the results obtained related to reference trajectory generation, least square orbit 
determination and EKF orbit determination method are discussed. 

 

A. Reference trajectory generation 
 

 Software to generate reference trajectory is developed in MATLAB. The effect of various zonal 
perturbations like  ;!, ;� and ;? were tested. The Keplerian model shown in Eq. (6) is numerically integrated 
with fixed step size Runge-Kutta 4th order method for the period of T=86,400 sec. Step size t =10 sec is used 
for orbit integration. As can be seen from Fig. 3, the satellite orbit is confined with its orbital plane i.e. 
under the influence of central gravitational field. The Eq. (7) is integrated first to get  ;! perturbation by 
neglecting  ;� and ;? terms. As can be seen from Fig.4 when secular perturbation term ;! is introduced, the 
satellite orbit gets deviated from the orbit in the central gravitation field.  
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Figure: 3. Keplerian Orbit Integration Figure: 4. Orbit Integration with ;! 
 
To get the idea of the orbital parameter variation in detail each individual orbital parameter � 

(semimajor axis in km), �,(eccentricity), +,(inclination angle in degree), �(ascending node in degree), \ 
(argument of perigee in degree) respectively is plotted with respect to time separately. The Fig.5 shows 
orbital parameters variation with respect to time in Keplerian orbit. As can be seen from Fig. 5, there is no 
significant change in the orbital parameters except true anomaly (&) (which define the angular position of 
orbiting body, it is subject to change with time due to the position changes) because there is no other force 
which causes the change in orbital parameters. The maximum and minimum values of orbital elements 
obtained in an orbit in different cases are given in Table 2. The variations in the orbital elements due to 
secular perturbations ;!, ;� and ;?  are shown in Fig. 6. Satellite dynamic model Eq. (7) are then integrated 
considering the effects of  ;!, ;� and ;? for the period T=86,400 sec with fixed step size=10 sec. As shown in 
Fig. 6d, the regression of the ascending node under the  ;!, ;� and ;? perturbations is observed. In case of  ;!, ;�  and ;?  perturbed orbit, the ascending node and argument of perigee exhibits significant almost linear 
variation. The motion of the ascending node occurs because of the added attraction of the Earth’s equatorial 
bulge, which introduces force components towards the equator. The ascending node regresses for direct 
orbits (00< i < 900) and advances for retrograde orbits (900< i < 1800).  From this study it is observed that ;! 
is the main zonal parameter which affects the state vector more. Other parameters like ;� and ;? have a 
greater impact for long term integration. In the present application the long term integration is not required.   

 

Table 2: Variations in orbital elements 

Orbital 
Parameters Keplerian orbit ;! ;!, ;� and ;? 

 Max. Min. Max.  Min. Max. Min. � [km] 6828.956 6828.952 6828.975 6824.416 6871.082 6818.754 �  0.009016 0.009015 0.009311 0.00711 0.064504 0.007943 +,[deg.] 28.47401 28.47401 28.47404 28.43975 28.5831 28.39334 ª [deg.] 35.91182 35.91182 35.91182 28.96786 35.92338 29.04105 \ [deg.] -44.5593 -44.5708 -32.5345 -58.0807 -0.00189 -46.7252 
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Figure 5. Orbital parameters variation in Keplerian orbit 

 
Figure 6. Orbital parameter variation due to main harmonic  ;!, ;� and ;?. 
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a. Atmospheric drag effect 
 

The orbit of a satellite is integrated for a 1, 2 and 5 days period to test the effect of drag on the satellite 
orbital elements. It is observed from Fig. 7, that semimajor axis shows major declination with atmospheric 
drag effect. For longer time period i.e. for a period of 5 days semimajor axis decline by 500 meter (Fig 7e). 
This considerable declination in the semimajor axis affects the accuracy of the orbit determination.  
 

Fig: 7a. ;! + Drag (Period: one day) Fig: 7b. ;! only (Period: one day) 

Fig: 7c. ;! + Drag (Period: two day)  Fig: 7d. ;! only (Period: two day) 
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Fig: 7e. ;! + Drag (Period: five day) Fig: 7f. ;! only (Period: five day) 

 

B. Orbit estimation results: least squares 
Least squares differential correction algorithm is used to determine the orbit of a spacecraft from 

simulation of position and velocity measurements generated along the reference trajectory. The subroutine 
for the same is developed in MATLAB environment. The true spacecraft position and velocity at initial 
epoch for present simulations with respect to the inertial reference frame of the standard epoch J2000.0 are 
given by; 
 ��� � *E¥ F¤E JLE£,
 KM¤  F¥J£ ,H¥ E¤¥ EFO- km; X�� � *,H¤¥FHLJJ£,
F¤HFHM E£,
E¤¥KK¥L¥- km/s.   
 
The model equations used in this method are given in Eq. (7) and Eq. (18) to Eq. (22). Measurements are 
taken at 10-second intervals over a 100-second simulation. The measurement errors are zero-mean Gaussian 
with a standard deviation of the position measurement error given by �position = 10 m, and a standard 
deviation of the velocity measurements given by �velocity = 0.1 m/sec.  
 

 
Table 3.  Least square iterations for orbit estimation 

 

Nr Initial position components [km] Initial velocity components [km/s] 

1 5482 1 1 1 1 1 

2 2675.412 -4000.12 -1259.63 3.792749 4.888852 3.014527 

3 4508.612 -7915.99 6013.159 4.330451 9.472996 -8.56845 

4 2846.889 658.872 10627.15 9.703767 -6.5569 -13.5849 

5 3523.785 -905.629 5868.684 7.235599 -0.69701 -4.03073 

6 3919.372 -183.179 5974.346 5.880111 -2.54941 -4.24749 

7 3913.082 -184.847 5914.523 5.906372 -2.54047 -3.98977 
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The estimated values of state vector components shown in Table 3, are in the agreement with the given true 
position and velocity components at initial epoch, at the level of a few hundred meters to one kilometer 
(position) and at the level of several tens of meters per second (velocity). In order to assess the performance 
of the least squares differential correction algorithm, the initial guesses for the position and velocity are 
given by ��� = [5482 1 1] km, and X�� = [1 1 1] km/sec. As can be seen from Table 3, the algorithm converges 
after seven iterations in the present case. 

C. Orbit estimation: extended Kalman filter 
The satellite dynamic model is of non-linear form. Due to the non-linear relation of the state vector and 

the measurements, multiple iterations are required to compute the state estimate. The subroutine for the 
same in developed in MATLAB environment. The true spacecraft position and velocity at the initial epoch 
for present simulations are given by; 
 ��� � *E¥ F¤E JLE£,
 KM¤  F¥J£ ,H¥ E¤¥ EFO- km; X�� � *,H¤¥FHLJJ£,
F¤HFHM E£,
E¤¥KK¥L¥- km/s.   

 
Using EKF the reference trajectory is updated with each measurement. In the EKF method, the only 

analytical computations for the orbital EKF are the evaluations for the partial derivatives of dynamic model 
and observation model with respect to the state vector |99�. These Jacobian, �, and sensitivity matrix H are 
evaluated at the current estimated state. Due to its sequential in nature it takes less iterations to compute 
state estimate.  

 
Table 4.  EKF iterations for orbit estimation 

 
Nr Position (km) Velocity (km/sec) 

1 4156.668 265.6841 6260.527 -3.227 -19.4337 -14.3844 
2 3911.886 -185.258 5913.071 5.94139 -2.54235 -3.97501 
3 3911.886 -185.257 5913.072 5.941394 -2.54239 -3.97503 

 
Therefore implementation of EKF algorithm is much more straightforward than Least Squares 

Differential Correction method. It is clearly seen from Table. 4, EKF converges much faster than least 
square method due to its sequential in nature. 
 

4. CONCLUSIONS 
 

In this work, the state vector is propagated using fixed step size orbit integration. Satellite orbit dynamic 
models with  ;!, ;� and ;? are integrated. With this experiment, it is observed that orbit integration with ;!,only is sufficient to use for present application. Effect of atmospheric drag is also studied. Using the 
proposed simplified model it is concluded that it is feasible for on-board orbit determination application.  To 
start the EKF orbit determination algorithm it is required to set the accurate initial guess. The same guess is 
determined first by least square algorithm and then it is further used in EKF orbit determination algorithm. 
Both, the least square and EKF orbit determination algorithms are developed and the results of the same are 
compared with each other. With our study it is observed that EKF algorithm is much faster than least square 
algorithm because of its recursive in nature and also shows comparable accuracy with least square method. 
This property of EKF algorithms makes it suitable for hardware implementation for autonomous orbit 
determination.  
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