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ABSTRACT
The kinematic orbit is a time series of position vectors generally obtained from GPS 
observations. Velocity vector is required for satellite gravimetry application. It cannot 
directly be observed and should be numerically determined from position vectors. Numerical 
differentiation is usually employed for a satellite’s velocity, and acceleration determination. 
However, noise amplification is the single obstacle to the numerical differentiation. As an 
alternative, velocity vector is considered as a part of the state vector and is determined using 
the Kalman filter method. In this study, velocity vector is computed using the numerical 
differentiation (e.g., 9-point Newton interpolation scheme) and Kalman filtering for the 
GRACE twin satellites. The numerical results show that Kalman filtering yields more 
accurate results than numerical differentiation when they are compared with the inter-
satellite range-rate measurements. 
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1. INTRODUCTION 
The kinematic orbit derived from GPS observations is a dense and accurate orbit. It provides 
necessary information for many applications in geometrical geodesy. However, for dynamic 
applications of satellites in geodesy, i.e. satellite gravimetry, 3D velocity and acceleration of 
satellites are required. Numerical differentiation is a usual method for satellite velocity and 
acceleration determination. Numerical differentiation is a technique to produce an estimate 
of the derivative of a mathematical function or function subroutine using values from the 
function and perhaps other knowledge about the function [1]. It is based on the 
approximation of the original approximating polynomial which yields the functions value at 
the observation points. The numerical differentiation approach used in this paper is 9-point 
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Newton method. This method is a common approach in satellite geodesy for calculating 
velocity and acceleration of satellite [2, 3]. Numerical differentiation is based on the 
geometrical information without using any physical information. Amplification of the 
measurement noise is the main obstacle of this method [4].  

Kalman filtering is a viable alternative method for deriving velocity vector from kinematic 
orbit. Kalman filtering is desirable in many engineering applications. The velocity vector as 
an unknown vector is estimated by Kalman filtering in reduced-dynamic orbit determination. 
Detecting gross and systematic errors and smoothing random error are the most important 
advantages of this method [5, 6, 7].  

Incorporating dynamic model as a function with physical properties in addition to 
geometrical information, kinematic orbit, into Kalman filtering process is the superior reason 
of this approach in comparison with numerical differentiation. By using dynamic model, the 
effects of geometrical errors, noise, systematic and gross errors, will be reduced. Unlike 
Kalman filtering, gross and systematic errors will be directly entered into results of 
numerical differentiation methods and noise will be amplified.  
The K-Band Ranging (KBR) observations of twin satellites GRACE are used for comparison 
between velocity vectors derived from numerical differentiation and Kalman filtering. The 
ranging system precisely measures the distance changes between the twin satellites in time. 
This precise measurement is a reliable reference for a proper comparison between velocity 
vectors of both methods. The results show the reduced dynamic velocity vector is more 
accurate than the velocity vector obtained by numerical differentiation. 

2 METHODOLOGY 
As an alternative strategy, velocity vector was estimated using extended Kalman filtering 
instead of numerical differentiation. Therefore, these methods are concisely described in the 
following sub-sections.  

2.1 Numerical differentiation 
Kinematic orbit is a time series of satellite positions. However, velocity vector is required for 
more applications e.g. in gravity field recovery using the energy integral [8]. The numerical 
differentiation is a mathematical process for computing the numerical value of derivative of 
a function [9]. Newton interpolation is suitable and highly efficient for many applications in 
mathematics e.g. in numerical integration, numerical differentiation and polynomial 
approximation. This method could be used for evaluating numerical value of derivative of a 
given function by deriving of approximated polynomial. The n-point Newton interpolation 
formula, for equidistant sampling points is [2]:  
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with Newton interpolation forward differences 
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where )( 1tf  is initial value of function, ii tth �� �1 is the sampling interval, and 
 is defined as 
the normalized distance hxx /)( 1��
 . In the n-point interpolation scheme, the central point 

)1( �nt  has the most optimal performance. By deriving of this interpolated polynomial, the 
first-, second- and higher order derivatives could be obtained.  

2.2 Extended Kalman Filtering  
Kalman filtering is a recursive filtering that each state is computed from the previous state 
and the new observation, so only the previous estimate requires storage [10]. The relations of 
Kalman filtering are based on minimizing the variance of the estimation error.  

Kalman filtering algorithm is useable for linear dynamic system with linear observation 
equations. By linearizing nonlinear system, a new error source is entered to computation 
process named linearization error. Although the linearized Kalman filtering is adequate for 
many applications, it may not be adequate in orbit determination process, due to high 
nonlinearity of equations of motion [11]. Therefore to minimize the effects of errors due to 
the neglect of higher order terms in the linearization procedure, extended Kalman filtering 
was selected instead of standard Kalman filtering in presented paper. The extended form of 
the sequential estimation algorithm is [12]: 

),(1 iii tXfX ��
� �  

(3) 
iii

T
iiii QttPtttP ���� �
�

�
�
� ),(),()( 111  

(4) 
The time-update phase updates the state �

iX  and the covariance matrix �
iP  along the time 

using the dynamical model ),( ii tXf � . Where iQ  is the covariance of the process noise and 
),( 1 ii tt ��  is the state transition matrix, which relates the state deviation between 1�it  and it . 

The state transition matrix is directly determined using numerical integration of the matrix 
differential equation by considering gravitational and non-gravitational forces acting on 
satellite.  
In the measurement update phase, the estimated state vector �

�1iX and the estimated error 
covariance �

�1iP  are given by Eq. (5) and (6), respectively: 
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where 1�iK  is Gain matrix obtained by 
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(7) 
where 1�iy� , 1�iR and 1�iH  respectively are the observation residual, the covariance matrix of 
observation noise, and the design matrix of the observation.  

2.2.1 Observation Model  
Different type of observations can be used for estimation of satellite positions as the output 
of kinematic orbit determination process. In this research for simplicity of implementation, 
code measurements are used for estimation of LEO satellites kinematic orbits. The observed 
orbit is obtained from ionosphere-free linear combination of the GPS satellite P-code. 

2.2.2 Dynamic Model
The dynamic model described the satellite’s motion with time was constructed using forces 
acting on the satellite. The gravitational forces such as geopotential, gravity of the Sun and 
Moon and indirect effect of third body, solid and ocean tide, and non-gravitational forces 
such as atmospheric drag and solar radiation pressure have been modeled for transition 
matrix determination in orbit determination process.  

In this paper, EGM96 was applied as a gravity field of Earth up to the 70th order and degree 
[13]. The ephemerides of the Moon and Sun are respectively calculated using the theory 
ELP-2000/82 represented by Chapront-Touze and Chapront [14] and analytical formulas 
[15]. A dynamic global of the Earth’s atmosphere, NRLMSISE-00, was used for the air-drag 
force computations [16]. The solar radiation pressure is obtained from the calculation of the 
sunlight percentage [17]. IERS formulations are used for solid Earth tide modeling [18]. 

3 NUMERICAL ANALYSIS 
The K-Band Ranging (KBR) system measures the variation of distance between the GRACE 
twin satellites, by the precision of 1 �m/sec [19]. Due to high precision of range rate 
obtained from KBR system, this observation could be used as a reference for qualify control 
of kinematic and reduced-dynamic orbits. The satellites range-rate is a function of position 
and velocity vectors of the GRACE satellite pairs. Comparing the computed and observed 
range-rate measurements, the quality of kinematic or reduced-dynamic orbits is determined. 
The relation between inter satellite range-rate and position and velocity vectors of twin 
satellite is [20]:  
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Ar  and Br are the position vectors of GRACE A and B where Ar  and Br show their 
respective velocity vectors.  
The numerical differentiation is used for calculation of the velocity vectors required for 
computation of the range-rate computed values. For quality control of the reduced-dynamic 
and kinematic orbits, the computed range-rate obtained from these orbits are compared by 
the observed value. The algorithm of this comparison is shown in figure 1.  
In the first approach, both the position and velocity vectors needed for range-rate 
computation are obtained via filtering. In the second approach position vector is obtained 
from kinematic orbit and velocity vector is computed using numerical differentiation. In the 
third approach, the position vector is obtained from Kalman filtering and velocity vector is 
computed from numerical differentiation. The third approach is a combination of filtering 
and numerical differentiation. In this way, both approaches, the first and third, use the 
filtered positions. The only differences are due to the error of the velocity vectors. Therefore, 
the comparison between the computed range-rate resulted from these two approaches with 
the observed quantity is equivalent to comparison of the velocity vectors achieved from 
Kalman filter/Numerical differentiation methods. 
 

 
 

Fig. 1. Algorithm for range-rate comparison

Differences between the observed and computed range-rates from three approaches are 
plotted in Figure 2. 
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Fig. 2. The differences between the observed and computed range-rate from the first 

(lightest), second (light) and third (dark) approaches

The lightest and light curves show the difference between the computed range-rate from the 
kinematic orbits (with and without filtering) from the observed range-rate respectively.  It is 
clear that the filtered position vectors using the Kalman procedure lead to more accurate 
results.  
The dark curves show differences between the observed and computed range-rate from the 
third approach. As seen, the computed range-rate derived from first approach is better than 
that of the third too. However, the only difference in both approaches is the velocity vectors. 
As a result, it could strictly be said that the quality of the velocity vector derived from Kalman 
filtering is much better than the velocity vector derived from the numerical differentiation 
method (e.g., 9-point Newton differentiation).  
Table 1 shows the basic statistics of the differences between the observed and computed 
range-rate from three approaches of range-rate comparison algorithm. 

Table 1. The basic statistics of range-rate comparisons from three approaches 

Approach min   
(mm/s) 

max  
(mm/s) 

mean  
(mm/s) 

std    
(mm/s) 

1st App. -2.49 4.70 0.03 0.81 

2nd App. -658.01 281.74 -0.01 38.72 

3rd App. -13.41 19.15 0.00 2.33 
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4. CONCLUSIONS 
Comparison between the numerically derived velocity vector and that of the Kalman filtering 
shows that the velocity vector can be derived with lower noise level in Kalman filtering. 
Higher accuracy can be obtained even if the kinematic orbit is filtered before the 
implementation of numerical differentiation. Velocity enhancement with the filtered orbit is 
due to reduction of the effects of the geometrical errors (observation noise, systematic and 
gross errors) on the purely kinematic orbit. 
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