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Abstract
The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) has received significant attention worldwide due to the emergence of 
multidrug-resistant microorganisms. Shiga toxin-producing Escherichia coli is a major foodborne pathogen that causes gastroenteritis 
that may be complicated by hemorrhagic colitis or hemolytic uremic syndrome. Therefore, this study aimed to evaluate the antimicrobial 
effect of ZnO NPs against E. coli O26 and its Shiga toxin type 2 (Stx2). Multidrug resistance phenotype was observed in E. coli O26, 
with co-resistance to several unrelated families of antimicrobial agents. Different concentrations of ZnO NPs nanoparticles (20 nm) 
were tested against different cell densities of E. coli O26 (108, 106 and 105 CFU/ml). The minimum inhibitory concentration (MIC) value 
was 1 mg/ml. Minimum bactericidal concentration (MBC) was 1.5 mg/ml, 2.5 mg/ml and 3 mg/ml, respectively, depending on ZnO NPs 
concentrations and bacterial cell density. Results showed a significant (P≤0.05) decrease in Stx2 level in a response to ZnO NPs treat-
ment. As detected by quantitative real-time PCR, ZnO NPs down-regulated the expression of the Stx2 gene (P≤0.05). Moreover, various 
concentrations of ZnO NPs considerably reduced the total protein content in E. coli O26. There was a significant reduction in protein 
expression with increased ZnO NPs concentration compared to the non-treated control. Scanning electron micrographs (SEM) of the 
treated bacteria showed severe disruptive effects on E. coli O26 with increasing ZnO NPs concentration. The results revealed a strong 
correlation between the antibacterial effect and ZnO NPs concentrations. ZnO NPs exert their antibacterial activities through various 
mechanisms and could be used as a potent antibacterial agent against E. coli O26.
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Nanotechnology focuses on creating and using mate-
rials with nanoscale spatial dimensions (Abd El-Hack et 
al., 2017 a, b, 2021 a; Islam et al., 2022). There have been 
conflicting views on nanomaterials, with some believ-
ing they are safe (Sungkaworn et al., 2007; Abd El-Hack 
et al., 2021 b) while others believe they are too harmful 
(Woodhouse, 2004). Zinc oxide (ZnO) is safe for humans 
and animals as reported by the US Food and Drug Ad-
ministration (21CFR182.8991). It is being used in various 
biological applications such as drug delivery, bio-imaging 
probes, and cancer treatment (Akhtar et al., 2012; Al-Gabri 
et al., 2021). Zinc oxide nanoparticles (ZnO NPs) have an-
timicrobial activity (Sheiha et al., 2020; Alagawany et al., 
2021; Yehia et al., 2022) against Gram-positive bacteria 
(Guo et al., 2015), Gram-negative bacteria (Reddy et al., 
2014), spores germination and infectivity (Wagner et al., 
2016) and fungi (Ramadan et al., 2016). 

Several mechanisms of antibacterial action have been 
reported, including direct contact with cell walls which 

destroys bacterial cell integrity, resulting in the release 
of Zn ions and reactive oxygen species (ROS), leading 
to an oxidative effect (Makhluf et al., 2005; Zhang et 
al., 2010), damage of membrane cell wall through ad-
hesion on the cell membrane (Stoimenov et al., 2002), 
penetration through the membrane cell wall (Makhluf 
et al., 2005) and cellular internalization of nanoparti-
cles (Brayner et al., 2006). Multidrug-resistant E. coli is 
a major public health concern worldwide which causes 
serious infections (Hemeg, 2018). Shiga-toxigenic  
E. coli (STEC) impacts both animal and human health. 
The low infectious doses of STEC, in particular, were 
a major source of concern for public health (Murinda et 
al., 2019). 

The STEC causes gastrointestinal illnesses (Bascher-
aa et al., 2019), acute renal failure, and foodborne out-
breaks (Mohammadi et al., 2013). More than 70% of 
human non-O157 STEC infections are caused by STEC 
serogroup O26 (Shridhar et al., 2019). The virulence fac-
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tors of E. coli O26, highly pathogenic strains carrying the 
Shiga toxin type 2 (Stx2) genes, have increased the inci-
dence of hemolytic uremic syndrome (HUS) (Delannoy 
et al., 2015). The genes coding for Stx2 are the primary 
virulence factor of all STEC that causes a wide range of 
diseases, including hemorrhagic colitis and HUS (Lee et 
al., 2016), affecting neuronal function and leading to pa-
ralysis (Obata et al., 2008), gastroenteritis, urinary tract 
infections, neonatal meningitis, Crohn’s disease (Lim 
et al., 2017), severe systemic complications and death 
(Stromberg et al., 2015). 

ZnO NPs can potentially prevent STEC infection and 
the expression of adhesins, virulence factors, and Stxs 
(Crane et al., 2014). Yusof et al. (2019) recommended 
ZnO NPs as a perfect, safe and outstanding antimicrobial 
drug alternative. ZnO NPs differ from bulk ZnO. ZnO 
NPs are better in many commercial processes due to their 
small size and high surface area. Also, using ZnO NPs 
reduces the total amount of applied ZnO, enabling the de-
velopment of special applications in all fields of expertise 
(Nemček et al., 2020).

The current work aimed to assess the antimicrobial 
activity of ZnO NPs against E. coli O26 and the Stx2 in 
qualitative and quantitative methods. This work investi-
gated the effects on the cellular level by SEM of E. coli 
O26 treated with ZnO NPs.

Material and methods

Bacterial strain
E. coli O26 was biochemically and serologically iden-

tified by Animal Health Research Institute. The specific 
primers combinations were used to detect the Stx2 gene 
in E. coli O26 as shown in Table 1 (Dipineto et al., 2006).

Preparation of zinc oxide nanoparticles suspension
ZnO NPs with a size of 20 nm were purchased from 

Sigma-Aldrich Corporation (St. Louis, MO, USA) and 
different concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 
2.5, 3, 3.5 and 4 mg/ml) were prepared. ZnO powder and 
nanoparticles (0.1 g) were initially sterilized at 160°C for 
3 h, then dispersed in 25 ml ultrapure water (Milli-Q®, 
Millipore Corporation, Bedford, MA, USA), vigorously 
vortexed for 10 min, then sonicated for 30 min to avoid 
aggregation and deposition of particles. The resulting 
suspension (4 mg/ml) was used as a stock solution for 
bacterial susceptibility evaluation (Tayel et al., 2011).

Antimicrobial susceptibility testing 
E. coli O26 was tested for its susceptibility against  

a panel of 16 antibiotics using the disk diffusion method 
according to the guidelines of the Clinical Laboratory 
Standard Institute (CLSI, 2020). The following antimi-
crobials were tested: ampicillin + sulbuctam (20 µg), 
colistin (10 µg), cephradine (30 µg), ciprofloxacin (5 µg), 
enrofloxacin (5 µg), nitrofurantoin (300 µg), doxycycline 
(30 µg), sulpha-trimethoprime (25 µg), spiramycin (100 

µg), spectinomycin (100 µg), nalidixic acid (30 µg), neo-
mycin (10 µg), gentamycin (10 µg), amoxycillin (25 µg), 
azithromycin (15 µg) and clindamycin (2 µg). Inhibition 
zone diameters were measured in mm. 

Determination of Minimum Inhibitory Concen-
tration (MIC) 	

MIC of ZnO NPs was performed according to ES-
CMID (2000). Overnight, broth cultures of E. coli O26 
were briefly suspended in sterilized Tryptic Soy Broth 
(TSB) (Sigma-Aldrich Corporation, St. Louis, MO, 
USA). Two hundred µl of bacterial culture (108, 106 and 
105 CFU/ml) were mixed with ZnO NPs at different con-
centrations (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 
and 4 mg/ml). The tubes were incubated for 24 h at 37°C. 
TSB medium with the tested bacterial concentrations and 
negative control was used. The MIC was determined by 
observing the visual turbidity of the tubes before and af-
ter incubation. We repeated the experiments three suc-
cessive times.

Determination of Minimum Bactericidal Concen-
tration (MBC)	

Plates were incubated at 37°C for 24 h. From each 
tube containing 24 h incubated bacterial culture with 
different ZnO NPs concentrations, 50 µl was streaked 
on the surface of sterilized MacConkey agar (Sigma-
Aldrich Corporation, St. Louis, MO, USA). The MBC 
was the least concentration of ZnO NPs that prevented 
the growth of bacteria on antibiotic-free culture media 
according to Alekish et al. (2018).

Determination of total protein using sodium dode-
cyl sulphate polyacrylamide gel electrophoresis (SDS-
PAGE)

Different cell densities of E. coli O26 (108, 106 and 105 

CFU/ml) were treated with various ZnO NPs (MIC val-
ue, MBC value and 3.5 mg/ml). The effect of ZnO NPs 
on protein synthesis was performed according to Ghazi 
et al. (2009). The stored lysed samples were brought to 
complete protein extraction. Cell debris was removed by 
centrifugation at ~16,000xg for 30 minutes at 4°C. The su-
pernatant was transferred to a new tube for further protein 
concentration determination analysis. A Bradford assay 
was performed according to the manufacturer’s instruc-
tions. Twenty (ug) protein concentration of each sample 
was loaded with an equal volume of 2x Laemmli sample 
buffer. The sample was separated on a polyacrylamide 
gel. Each of the previous mixtures was boiled at 95°C for 
5 min and then subjected to polyacrylamide gel electro-
phoresis. TGX Stain-Free™ FastCast™ Acrylamide Kit 
(SDS-PAGE) provided by Bio-Rad Laboratories, TNC, 
USA Catalog. NO. 161-0181 was used and prepared ac-
cording to the manufacturer’s instructions.

Scanning electron microscope (SEM) analysis
SEM was used to examine the morphological chang-

es of E. coli O26 before and after ZnO NPs treatment ac-
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cording to Tayel et al. (2011). Cells were primarily fixed 
with fixative buffer (2.5% glutaraldehyde, 2% paraform-
aldehyde in 0.1 M Na-cacodylate buffer, pH 7.35) for 30 
min. Then, they were rinsed three times with ultrapure 
water before being dehydrated using a series of ethanol 
solutions, dried, mounted on SEM tubs, and sputter-coat-
ed with gold/palladium, then examined.

Detection of Shiga toxin type 2 (Stx2) production 
using Enzyme-Linked Immunosorbent Assay (ELISA)

To investigate the effect of ZnO NPs on Stx2 pro-
duction, an indirect ELISA based on the recognition of 
Stx2 by specific antibodies was performed as described 
by USDA-FSIS Guidebook. Different cell densities of E. 
coli O26 (108, 106, and 105 CFU/ml) were treated with 
various ZnO NPs (MIC value, MBC value and 3.5 mg/
ml). E. coli O26 consisting of stationary-phase cells were 
obtained by inoculating tryptic soy broth with a single 
colony from a tryptic soy agar plate and adding differ-
ent ZnONPs concentrations, followed by incubation with 
shaking at 37°C for 10 h. Hundred μL of the control solu-
tions and samples were loaded into the wells of the test 
strips. Analysis in triplicate was done according to the 
manufacturer’s instructions. An anti-Stx2 antibody was 
used. Absorbance was read at 450 nm using a microplate 
ELISA photometer.

Measuring Stx2 gene expression using quantita-
tive real-time PCR (qPCR) analysis

To investigate the effect of ZnO NPs on the expression 
of the Sxt2 gene, qPCR was performed according to Chen et 
al. (2013). According to the manufacturer’s instruction, total 
RNA was extracted using RNA extraction kit  (Thermo Sci-
entific, Fermentas, #K0731). The housekeeping gene (RpoB) 
is represented as normalization and is used to calculate the 
relative gene expression or fold change in the target gene. 
Therefore, the quantities critical threshold (Ct) of the target 
gene was normalized with quantities (Ct) of the housekeep-
ing gene (RpoB) by using the 2-∆∆Ct method (Livak and 
Schmittgen, 2001). The qPCR with SYBR Green was used 
to measure the expression of the Stx2 gene, with RpoB as 
 an internal reference. The primers used are shown in Ta-
ble 2.

Statistical analysis 
All the data were expressed as means ±SE. The sta-

tistical significance was evaluated by one-way analysis 
of variance (ANOVA) using SPSS, 18.0 software (2011) 
and the individual comparisons were obtained by Dun-
can’s multiple range tests. Values were considered sta-
tistically significant when P≤0.05, according to Ross and 
Willson (2017). 

Results

Molecular detection of Shiga toxin type 2 (Stx2) gene
Specific primers were used to detect the expression 

of the Stx2 gene in E. coli O26. Positive amplification of 
779 bp fragments specific to the Stx2 gene in E. coli O26 
is shown in Figure 1.

Antimicrobial susceptibility testing
As illustrated in Table 3, E. coli O26 showed high resist-

ance to 10 (62.5%) of the tested antimicrobials: doxycycline, 
sulpha-trimethoprim, spiramycin, spectinomycin, nalidixic 
acid, neomycin, gentamycin, amoxicillin, azithromycin and 
clindamycin. However, the highest sensitivity was observed 
with the penicillin+β-lactamase inhibitor group of antibiot-
ics and polymyxin E group, followed by ciprofloxacin, en-
rofloxacin, nitrofurantoin and cephradine.

Determination of Minimum Inhibitory Concen-
tration (MIC) and Minimum Bactericidal Concentra-
tion (MBC) of ZnO NPs against E. coli O26

The antibacterial activity of ZnO NPs against E. coli 
O26 was investigated using MIC and MBC assays. The 
growth of E. coli O26 (108, 106 and 105 CFU/ml) was in-
dividually assessed with different concentrations of ZnO 
NPs (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 mg/
ml) after 24 h. MIC value of ZnO NPs against E. coli 
O26 was 1 mg/ml with different cell densities. The MBC 
of ZnO NPs was 1.5 mg/ml, 2.5 mg/ml and 3 mg/ml, de-
pending on bacterial cell density and ZnO NPs concen-
tration, as shown in Table 4. The antibacterial activity of 
ZnO NPs increased as the concentration of zinc oxide 
nanoparticles increased. 

Table 2. Forward and reverse primers sequences for Stx2 and RpoB genes used in qPCR assay

Target gene Forward primer Reverse primer Size (bp) Reference

Stx2 /5 CTTCGGTATCCTATTCCC/3 /5 GGGTGTGGTTAATAACAG/3 150 Chen et al. (2013)

RpoB /5 CAACCTGTTCGTACGTATC/3 /5 CTCTGTGGTGTAGTTCAG/3 79

Table 1. Oligonucleotide primers sequences used for the detection of Stx2 gene in E. coli O26

ReferenceLength of amplified productPrimer sequence (5’-3’)Gene

Dipineto et al. (2006)779 bp
CCATGACAACGGACAGCAGTT

Stx2
CCTGTCAACTGAGCAGCACTTTG
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Effect of different ZnO NPs concentrations on 
protein expression in E. coli O26

The total protein concentration in E. coli O26 (108, 
106 and 105 CFU/ml) treated with various concentrations 
of ZnO NPs (MIC concentration, MBC concentration 
and 3.5 mg/ml) and untreated control showed that the 

concentration of total protein decreased as the concentra-
tion of ZnO NPs increased, as illustrated in Figures 2 A, 
B and C.

SDS-PAGE analysis of the control and ZnO NPs 
treated E. coli O26 was performed. We found that the 
electrophoretic patterns were altered as the concentration 

Figure 1. Detection of stx2 gene by specific primers. L: Molecular weight marker, POS: Positive control, 1: PCR product of Stx2 gene tested  
E. coli O26 and Neg: negative control

Table 3. Antimicrobial susceptibility testing of E. coli O26 showing high multidrug resistance

InterpretationInhibition zone diameter 
(cm)

Concentration 
(μg)Antimicrobial agent

1.420Ampicillin + sulbuctam (SAM)

S1.210Colistin (CL)

I1.530Cephradine (CE)

I1.75Ciprofloxacin (CIF)

I1.75Enrofloxacine (EX)

I1.6300Nitrofrontoin (F)

R0.910Neomycin (N)

R0.810Gentamycin (CN)

R030Nalidixic Acid (NA)

R02Clindamysin (DA)

R1.315Azithromycin (AZM)

R1.5100Spectinomycin (SPT)

R0100Spiramycin (SR)

R025Amoxycillin (AX)

R025Sulphatrimethoprime (SXT)

R0.930Doxycycline (DO)

S: Sensitive; I: Intermediate; R: Resistance.

Table 4. The MIC and MBC of ZnO NPs against E. coli O26

MBC (mg/ml)MIC (mg/ml)E. coli O26 (CFU/ml)

1.5 1108

2.5 1106

31105
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of ZnO NPs varied compared to the untreated control, 
revealing clear polypeptide bands. At 1 mg/ml ZnO NPs 
concentration, the number and intensity of protein bands 
decreased and faded, whereas at MBC concentration and 
3.5 mg/ml ZnO NPs concentrations, no bands appeared, 
as shown in Figures 3 A, B and C.

Scanning electron microscope (SEM)
The interaction between ZnO NPs and E. coli O26 

was evaluated by SEM image analysis as shown in Fig-
ure 4. SEM analysis of E. coli O26 without ZnO NPs 
treatment (control) showed a rod with a length of 1–3 µm 
and an average diameter of 0.5–1 µm (Figure 4 A). The 
arrangement was mostly single or in groups. At 0.5 and 
1 mg/ml of ZnO NPs, damage to the membrane envelope 
components, different shapes in treated cells and the for-
mation of irregular cell surfaces were noticed. Also, few 
remaining intact cells were seen in a pond of released in-
ternal cell components (Figure 4 B). At 2.5 and 3 mg/ml 
of ZnO NPs, different shapes were found in the treated 
cells showing the ascendency of coccoid forms and the 
formation of irregular cell surfaces. At 3.5 mg/ml and 4 
mg/ml of ZnO NPs, there was a difference in length, di-
ameter and arrangements of treated cells by approximate-
ly 0.1–0.2 µm due to many softened, broadened, lysed 
cells with their internal components released, leading to 
the death of the cells, as shown in Figure 4 D.

Effect of different concentrations of ZnO NPs on 
Stx2 production by E. coli O26 

ELISA was performed to assess the effect of ZnO 
NPs on Stx2 production. As shown in Figures 5 A, B and 
C, a significant (P≤0.05) decrease in Stx2 level was found 
in the treated E. coli O26 (108, 106 and 105 CFU/ml) with 
varying concentrations of ZnO NPs (MIC concentration, 
MBC concentration and 3.5 mg/ml) compared to the un-
treated control. When the concentration of ZnO NPs was 
3.5 mg/ml, the lowest production of Stx2 was detected 
with the different cell densities of E. coli O26. No sig-
nificant differences were noticed between G3 (ZnO NPs 
concentration was the MBC value) and G4 (ZnO NPs 
concentration was higher than MBC concentration, 3.5 
mg/ml).

Effect of different concentrations of ZnO NPs on 
Stx2 gene expression by qPCR

The expression level of the Stx2 gene in all tested E. 
coli O26 densities (108, 106 and 105 CFU/ml) following ex-
posure to different ZnO NPs levels (0–3.5 mg/ml) was de-
termined by qPCR. Figures 6 A, B, and C showed signifi-
cant down-regulation of the Stx2 gene following exposure 
to different concentrations of ZnO NPs compared to the 
untreated control. The lowest expression of the Stx2 gene 
was noticed when the concentration of ZnO NPs was 3.5 
mg/ml with various cell densities of E. coli O26.

Figure 2. Effect of various concentrations of ZnO NPs on the total protein content of E. coli O26 (A: 108, B: 106 and C: 105 CFU/ml) following 
treatment with different concentrations of ZnO NPs (0–3.5 mg/ml), *P<0.05
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Figure 3. SDS-PAGE analysis of the protein expression in E. coli O26 (A: 108, B: 106, and C: 105 CFU/ml before (control) and after incubation 
with various concentrations of ZnO NPs (0–3.5 mg/ml). 2, control: E. coli O26 without treatment with ZnO NPs; 3, E. coli O26 treated with 
ZnO NPs at 1 mg/ml; 4, E. coli O26 treated with ZnO NPs at 1.5 mg/ml for (108 CFU/ml), 2.5 mg/ml for (106 CFU/ml) and 3 mg/ml for (105 

CFU/ml); 5, E. coli O26 treated with ZnO NPs at 3.5 mg/ml

Figure 4. Scanning electron microscopy (SEM) images show morphological alterations in E. coli O26 following treatment with different concentrations  
of ZnO NPs. (A): non-treated; (B): 0.5–1 mg/ml ZnO NPs; (C): 2.5–3 mg/ml ZnO NPs; (D): 3.5–4 mg/ml ZnO NPs
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Discussion

The emergence and widespread occurrence of multi-
drug-resistant pathogenic bacteria are becoming a global 
public health concern. E. coli is becoming increasingly 
resistant to multiple antibiotics, hindering the therapeu-

tic management of infections (Hemeg, 2018). Recently, 
metal oxide nanomaterials have exhibited superior an-
tibacterial activity against multidrug-resistant microor-
ganisms (Ashour et al., 2020; El-Tarabily et al., 2021; 
Mwaheb et al., 2021). There are some concerns that the 
application of metal nanoparticles could accelerate the 

Figure 5. Quantitative measurement of Stx2 production of E. coli O26 A: (108 CFU/ml), B: (106 CFU/ml) and C: (105 CFU/ml) CFU/ml following 
treatment by different concentrations of ZnO NPs (0–3.5 mg/ml) by an ELISA, *P<0.05

Figure 6. qPCR analysis of the expression of Stx2 gene in E. coli O26 A: (108 CFU/ml), B: (106 CFU/ml) and C: (105 CFU/ml) following treat-
ment with different concentrations of ZnO NPs (0–3.5 mg/ml). The expression level of the target gene in non-treated control was considered the 

baseline, *P<0.05
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development of metal-resistant bacteria leading to the de-
velopment of antimicrobial resistance mechanisms as re-
ported that strains of E. coli evolved Ag-NP resistance by 
overproducing flagellin, the main flagella protein to fa-
cilitate NP aggregation and immobilization outside cells 
but overcome by adding inhibitors of flagellin production 
(Amaro et al., 2021). Thus, this study investigated the an-
tibacterial effect of ZnO NPs against the Shiga toxigenic 
strain (E. coli O26) and the mechanisms by which ZnO 
NPs can influence the viability of E. coli O26 and Stx2 
toxicity. ZnO NPs showed a high therapeutic potential 
(Anjum et al., 2021; Abd El-Hack et al., 2017, 2021 a; 
Al-Gabri et al., 2021).

E. coli O26 was assessed for its susceptibility to 
16 antimicrobial agents. Substantial resistance rates to 
various antimicrobial classes were detected in Table 3. 
E. coli O26 showed resistance to doxycycline, sulpha-
trimethoprim, spiramycin, spectinomycin, nalidixic 
acid, neomycin, gentamycin, amoxicillin, azithromycin 
and clindamycin. However, it is sensitive to ampicillin 
+ sulbuctam and colistin. These results are consistent 
with numerous previous studies that reported multidrug-
resistant STEC worldwide (Cergole-Novella et al., 2011; 
Meng et al., 2014; Hemeg, 2018; Rubab and Oh, 2020). 
However, few previous data reported low resistance in 
STEC as Day et al. (2016). They studied antimicrobial 
resistance in STEC serogroup O26 isolated from human 
cases of diarrheal disease in England between June 2015 
and January 2016 and found that 82.6% and 64.7% of 
the isolates, respectively, lacked identifiable resistance 
genes and were predicted to be fully susceptible to 11 
different classes of antimicrobials. Lajhar et al. (2017) 
determined the antimicrobial resistance phenotype of E. 
coli O26 isolated from cattle and clinical sources in Aus-
tralia and a low level (13.6%) of antimicrobial resistance 
was observed.

The substantial antibiotic resistance identified in 
STEC creates a serious threat to the future control of 
STEC infections. It necessitates a need for a powerful 
alternative to these antibiotics. Different concentrations 
of ZnO NPs (20 nm) were used to determine the best 
concentration for the antibacterial activity against E. coli 
O26. As shown in Table 4, MIC of ZnO NPs on E. coli 
O26 with infective doses 108, 106 and 105 CFU/ml was 
1 mg/ml in all doses and the MBC was 1.5, 2.5 and 3 
mg/ml, respectively, under the same experimental con-
ditions. This indicates that ZnO NPs have antimicrobial 
properties against E. coli O26. The antibacterial activ-
ity of ZnO NPs increased as the concentration of NPs 
increased. These results agree with previous studies that 
found that ZnO NPs have antibacterial activity against 
E. coli (Liu et al., 2009; Wang et al., 2012; Torabi, 2017; 
Alam, 2021). Liu et al. (2009) reported that 3 mmol/l 
ZnO NPs could inhibit the growth of E. coli O157:H7 
and 12 mmol/l or higher concentrations completely in-
hibited the growth. 

Furthermore, Wang et al. (2012) found that MIC 
and MBC for E. coli K88 were 0.1 and 0.8 µg/ml. Far-

zana et al. (2017) reported MIC value of 0.08 mg/ml 
for E. coli. Şahin et al. (2017) showed that 60 μg/ml 
ZnO NPs was sufficient against Gram-negative bacteria  
(E. coli ATCC25922, E. coli O157:H7). Also, Ahmed et 
al. (2019) reported the same results with MIC of 1.0 mg/ 
ml and MBC of 1.5 mg/ ml. Hozyen et al. (2019) found 
that MIC and MBC values for E. coli were 5 mg/ml  
and 10 mg/ml, respectively. Differences in MIC and 
MBC values for E. coli may be due to the difference in 
the type of bacterial isolate and its concentration, in ad-
dition to the differences in size, concentration, crystal 
morphology of ZnO NPs and the methodology used for 
preparation.

The antibacterial activity of ZnO NPs increased as 
the concentration of NPs increased. Based on this result, 
ZnO nanoparticles have an antibacterial effect against 
E. coli O26. Narayanan et al. (2012) reported that even 
low concentrations of ZnO NPs had strong antibacterial 
activity on pathogenic E. coli. While some researchers 
argued that the antibacterial concentrations of ZnO NPs 
were safe to a certain level but toxic at higher concentra-
tions to pathogenic E. coli (Bratz et al., 2013; Ibrahim et 
al., 2017). However, Sikora et al. (2018) and Matuła et 
al. (2019) found that bacteria could regrow and that the 
nano-rods were not as strong as the antibiotic treatment 
because the used strain showed several problems while 
studying.

Transcriptomic and proteomic analysis has been 
widely used in studying the molecular mechanisms of 
the action of antibacterial agents (Khodadadi et al., 2020; 
Tsakou et al., 2020). The role of nanoparticles in bacte-
rial protein synthesis has received much interest in recent 
years. Nanoparticles can prevent bacteria from synthesiz-
ing protein and DNA by suppressing ATPase activities 
to lower ATP levels and preventing the ribosome subunit 
from binding tRNA (Cui et al., 2012; Alagawany et al., 
2021; Yehia et al., 2022). 

To investigate the effect of ZnO NPs on protein syn-
thesis, the total protein content in E. coli O26 (108, 106, 
and 105 CFU/ml) treated with various concentrations of 
ZnO NPs and untreated control was assessed. As shown 
in Figure 2, the total protein concentration in E. coli O26 
(108, 106, and 105 CFU/ml) declined as ZnO NPs level 
increased. Next, the total proteins of the control and ZnO 
NPs-treated with E. coli O26 were analyzed using SDS-
PAGE. Compared to the untreated control, protein ex-
pression was greatly affected as the concentration of ZnO 
NPs changed. The number and intensity of protein bands 
dropped and faded at 1 mg/ml ZnO NPs. However, no 
bands were seen at 3.5 mg/ml ZnO NPs as shown in Fig-
ure 3. Although these proteins were not further character-
ized, qualitative gels revealed a substantial variation in 
the protein profile of control and ZnO NPs-treated cells. 
The lack of protein detection on exposure to higher con-
centrations might be due to the interference of ZnO NPs 
with the protein synthesis process, as previously reported 
(Babele, 2019; El-Sayed et al., 2019; Singh et al., 2019; 
Li et al., 2020).
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A scanning electron microscope was performed to 
detect the morphology and cellular composition changes 
in E. coli O26 after treatment with ZnO NPs and their 
mechanism of action. In lower concentrations of ZnO 
NPs, abrasion and penetration of ZnO particles through 
the cell envelope were observed, leading to damage in 
the membrane envelope components. Few remaining in-
tact cells were seen in a pond of released internal cell 
components. At higher concentrations, the ascendence of 
coccoid forms, formation of irregular cell surfaces and 
many cells softened, broadened, and lysed with their in-
ternal components released, leading to the death of the 
cells after less than 24 h of exposure. Thus, SEM images 
provided evidence of damage to bacterial cells after ex-
posure to ZnO NPs which agree with Zhang et al. (2010), 
Tayel et al. (2011), Thangam et al. (2014), Manzoor et 
al. (2016), Dobrucka et al. (2018), Siddiqi et al. (2018), 
Awwad et al. (2020) and Naskar et al. (2020). Liu et al. 
(2009) reported no morphological changes; however, the 
reasons for that were unknown. Shiga toxin (Stx) is the 
major virulence factor of Shiga toxin-producing E. coli 
(STEC) and plays a significant role in E. coli pathogen-
esis. Zinc inhibits some pathogens’ virulence factor ex-
pression and may be pathogen-specific (Patel et al., 2010; 
Sheiha et al., 2020). 

To our knowledge, no study determined the effect 
of ZnO NPs on Shiga toxin production. Therefore, Stx2 
was measured by ELISA to detect whether ZnO NPs 
could affect Stx2 production. Figure 5 shows a signifi-
cant (P≤0.05) decrease in Stx2 level in E. coli O26 treated 
with various concentrations of ZnO NPs. Thus, ZnO NPs 
suppressed Shiga toxin production. This result is support-
ed by the finding of Uemura et al. (2017), who reported  
a significant reduction in the cytotoxic activity of Stx2  
in zinc-supplemented media compared to the control. 
Also, quantitative real-time PCR (qPCR) was performed 
to detect the Stx2 gene. Figure 6 showed that ZnO  
NPs down-regulated the expression of the Stx2 gene, and 
there was a strong correlation between the down-regu- 
lation of the Stx2 gene and ZnO NPs concentrations. 
These results agree with previous studies that clarified 
that zinc exerts inhibitory effects on STEC strains and 
Stx expression (Crane et al., 2011, 2014; Uemura et al., 
2017).

Conclusion
In conclusion, a multidrug resistance phenotype 

was observed in E. coli O26, with co-resistance to sev-
eral unrelated families of antimicrobial agents. ZnO NPs 
treatment caused a significant decrease in Stx2 level and 
down-regulated the expression of the Stx2 gene. Moreo-
ver, various ZnO NPs levels considerably reduced the 
total protein content in E. coli O26. ZnO NPs showed 
severe disruptive effects on E. coli O26 with increasing 
ZnO NPs concentration. These results could lead us to 
consider ZnO NPs as the next-generation antibiotic al-
ternative against multidrug-resistant pathogenic E. coli. 
However, further in vivo studies are still needed to con-

firm these antibacterial activities and to determine the 
safe doses of ZnO NPs to animal cells.
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