🗲 sciendo

EFFECT OF FERMENTED RAPESEED MEAL AS A FEED COMPONENT ON THE REDOX AND IMMUNE SYSTEM OF PREGNANT SOWS **AND THEIR OFFSPRING***

Anna Czech, Anna Stepniowska*, Martyna Kiesz

Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland *Corresponding author: anna.stepniowska@up.lublin.pl

Abstract

The aim of the study was to assess the effect of dried fermented rapeseed meal (FRSM) in diets for sows on blood redox and immunological parameters, taking into account the physiological period (pregnancy or lactation) and age (primiparous vs multiparous sows). The experiment also aimed to determine how FRSM administered to pregnant sows, affects the antioxidant and immune systems of piglets. The animals were divided into 4 groups of 15 animals each. Control groups of primiparous (C_c) and multiparous sows (C_s) received a standard diet for pregnant or lactating sows. Experimental groups of primiparous (E_c) and multiparous sows (E_s) received feed with a 4% share of FRSM in place of soybean meal up to day 100 of gestation, 9% share of FRSM from day 100 of gestation to day 7 of lactation, and then again 4% share of FRSM until the end of lactation. In the blood plasma of pregnant sows fed diet with FRSM addition, higher FRAP value and vitamin C, uric acid (UA), immunoglobulin IgG content, lymphocytes (LYM) count and a lower content of malondialdehyde (MDA), lipid hydroperoxides (LOOH), immunoglobulin IgM was noted than in the blood plasma of control sows. Both primiparous and multiparous lactation sows whose feed included FRSM had higher catalase (CAT) activity, higher FRAP, vitamin C, immunoglobulin IgG and IL-6 content, and lower UA content than the control sows. Piglets born to sows fed diet with FRSM addition had significantly higher FRAP values, vitamin C, IgG, and IL-6 content and white blood cells (WBC) count and lower MDA and UA content in the blood plasma than piglets born to sows from control group. Multiparous sows compared to primiparous sows had higher CAT activity, and higher vitamin C, LOOH, creatinine (CREAT), and IgM content. Elevated FRAP, and CREAT levels and reduced MDA content were also observed in the plasma of the multiparous sows compared to primiparous sows during lactation. Multiparous lactation sows compared to primiparous sows had lower WBC count, and IgG and IgM content. Piglets born to multiparous sows had higher FRAP values, LOOH content and IgA content while lower MDA content compared to piglets born to primiparous sows. The inclusion of dried fermented rapeseed meal in feed for sows significantly stimulates antioxidant processes in primiparous and multiparous sows and in their piglets. The inclusion of dried fermented rapeseed meal in the diet of sows stimulates antioxidant processes in primiparous and multiparous sows and in their piglets. This is responsible for

^{*}This research was supported by the Ministry of Science and Higher Education: University of Life and Sciences in Lublin (no. ZKT/S/20/2021-ZiR).

stimulation of the immune system (increased LYM counts and IgG titres in the blood plasma). The improved antioxidant status in the plasma suggests that dried fermented rapeseed meal stimulated the immune system of pregnant and lactating sows and their newborn offspring.

Key words: fermented rapeseed meal, sows, piglets, antioxidant, immune system

Rapeseed meal use in feeding of sows and piglets is limited by the presence of numerous antinutritional factors (ANF), such as glucosinolates, tannins, phytic acid or non-starch polysaccharides (Jakobsen et al., 2015; Czech and Grela, 2004). The presence of anti-nutritional compounds is particularly dangerous for primiparous sows, in which pregnancy, farrowing and weaning are associated with dynamic adaptive changes (anatomical, physiological and metabolic). One of the methods for reducing the amount of ANFs in rapeseed meal is to subject it to the action of microorganisms (fermentation) whose enzymes can effectively hydrolyse proteins and, above all, break down antinutrients (Canibe and Jensen, 2012; Jha and Leterme, 2012). Use of fermented rapeseed meal (FRSM) in the sow's diet may result in increased intestinal immunity (Gao et al., 2009), in better use of mineral compounds and improvement of blood parameters of sows and piglets (Czech et al., 2020; Tomaszewska et al., 2019). Stimulation of the sow's immune system is also associated with an increase in the level of immunoglobulins in the blood and in the colostrum. Maternal immunoglobulins (IgG, IgM, IgA) derived from colostrum, due to the total permeability of the intestines, penetrate through enterocytes into the bloodstream of piglets, which has a positive effect on the health, survival and general condition of piglets (Declerck et al., 2015).

Activation of the immune system to secrete immunoglobulins through the gastrointestinal mucosa is associated with the presence of probiotic microorganisms found in fermented feed (Missotten et al., 2015). The presence of microorganisms stimulates the production of organic acids, which by lowering the intestinal pH create an unfavourable growth environment for some enteropathogens, thereby improving the gut microbiota and thus animal health (Wang et al., 2012). Diet with fermented products affects not only the humoral response (immunoglobulin content, lysozyme activity, and cytokine production), but also cellular immunity. The reduction in the heterophil/lymphocyte ratio observed in chickens fed diet with addition of fermented products suggests that these products may suppress the immune response (Sugiharto and Ranjitkar, 2019).

Thus far, no studies have been conducted on the use of FRSM in the diet of sows during pregnancy and lactation; therefore, the experiment may introduce new information regarding this valuable protein feed component and its effect on the antioxidant and immune system. In choosing the amount of FRSM in diet for sows, we kept in mind that in addition to the benefits of fermentation, fermented raw materials also contain compounds that can reduce the palatability of feed (acetic acid and sinapine) and adversely affect metabolic reactions (biogenic amines formed during fermentation, e.g. cadaverine, putrescine and histamine), which is undesirable for pregnant and lactating sows (Canibe and Jensen, 2012).

It has been assumed that the addition of fermented rapeseed meal to feed will improve the antioxidant and the immune status of sows. The aim of the study was to assess the effect of FRSM in diets for sows on blood redox and immunological parameters, taking into account the physiological period (pregnancy or lactation) and age (primiparous vs multiparous sows). The experiment also aimed to determine how FRSM administered to pregnant sows, affects the antioxidant and immune systems of piglets.

Material and methods

The experimental procedure was approved by the Local Ethics Commission for Experiments with Animals in Lublin (approval no. 21/2016).

Experimental design

The experimental material comprised 60 Yorkshire sows mated with Danish Landrace boars. These included 30 primiparous gilts (average body weight 150 kg \pm 8 kg; average backfat thickness 18 mm \pm 1.5 mm) and 30 multiparous sows after their second lactation (average body weight 250 kg \pm 11 kg; average backfat thickness 24 mm \pm 2 mm). They were randomly divided into two groups of equal size – control and experimental. The animals in the control groups C_{G} (gilts) and Cs (sows) received a standard diet for pregnant or lactating sows, depending on the reproductive period. Experimental groups E_c and E_s were gilts and multiparous sows, respectively, receiving feed with a 4% share of fermented rapeseed meal in place of soybean meal from 28 d to 100 d of gestation. In addition, from 100 d of gestation to 7 d of lactation, the sows in these groups received feed with a 9% share of FRSM, and then again, a diet with a 4% share of FRSM until the end of lactation. During gestation, the sows stayed in pens with 5 animals apiece (group feeding), and from two weeks before parturition until weaning they were housed in individual stalls (individual feeding). FRSM was obtained from European Protein AS (Bække, Denmark).

Animal diets

The sows were fed dry diet in accordance with NRC (2012). Gestation diets (2.5 kg per day) were supplied twice a day (08:00 and 18:00). On d 108 of gestation, sows were transported to farrowing stalls and individually fed. After farrowing, all sows received the experimental lactation diet. The lactation diet was supplied three times a day (08:00, 12:00 and 18:00), starting at 2.0 kg/day and increasing by 0.5 kg/day during the first week. Afterwards, sows had free access to the diet until they were weaned on d 28 of lactation. Sows were provided *ad libitum* access to water during the entire experimental trial. The content of nutrients and ANFs such as glucosinolates, tannins, phytate phosphorus in the diets for the animals in the control and experimental groups are given in Table 1. Details of feed intake and methods for the determination of nutrients and ANFs are included in Grela et al. (2019).

Table 1. Composition and conte	nt of nutrient	ts and bioactiv	ve substances	in 1 kg of feed (1	Grela et al., 2019	(6	
14	EDGM	Early p	regnancy ¹	Mid-pregnanc	y/late lactation ²	Late pregnancy	y/early lactat
Item	FKSM'	C III	E_EP	CMPL	E _{MPL}	C _{LPL}	ELPL
(% of air-dry matter)							
		0.00	0.00	36.00	36.00	36.00	36.00
		30.00	30.00	0.00	0.00	0.00	0.00
		29.60	29.00	37.30	36.70	37.30	34.70
		29.34	29.34	4.04	4.04	4.04	4.04

Table 1. Composition and coni	tent of nutrie	ants and bloact	Ive substances	in I kg of feed	(Urela et al., 20	(61)	
14	EDGAL	Early]	pregnancy ¹	Mid-pregnar	ncy/late lactatio	n ² Late pregnan	cy/early lactation ³
IIGII	FK3M	C	E _{EP}	CMPL	EMPL	CLPL	ELPL
Ingredients (% of air-dry matter)							
wheat		0.00	0.00	36.00	36.00	36.00	36.00
triticale		30.00	30.00	0.00	0.00	0.00	0.00
barley		29.60	29.00	37.30	36.70	37.30	34.70
oat		29.34	29.34	4.04	4.04	4.04	4.04
soybean meal (44% CP)		6.00	3.00	16.00	13.00	16.00	10.00
rapeseed oil		1.00	1.00	2.00	2.00	2.00	2.00
salt (NaCl)		0.40	0.40	0.40	0.40	0.40	0.40
limestone		0.70	0.70	0.70	0.70	0.70	0.70
monocalcium phosphate		0.26	0.26	0.26	0.26	0.26	0.26
L-Lysine		0.12	0.12	0.12	0.12	0.12	0.12
DL-Methionine		0.08	0.08	0.08	0.08	0.08	0.08
mineral-vitamin premix ⁴		2.10	2.10	2.70	2.70	2.70	2.70
acidifier ⁵		0.40	0.0	0.40	0.0	0.40	0.0
FRSM		0.00	4.00	0.00	4.00	0.00	9.00
Analysed (g/kg)							
dry matter	882.70	883.00	882.00	889.00	888.00	887.00	885.00
crude ash	78.90	50.60	49.80	52.40	51.90	52.30	51.80
crude protein	291.80	150.30	150.10	170.40	171.20	171.30	172.10
ether extract	31.70	32.20	32.30	27.20	27.30	27.30	27.50
crude fibre	91.50	73.50	74.40	48.50	50.20	48.90	51.10
total phosphorus	9.09	5.23	5.19	5.63	5.67	5.71	5.69

A. Czech et al.

	00	J.14 a	010.7	0./Yä	1.74 U	J.11 a	2.U1 U
calcium	8.05	7.45	7.43	8.62	8.63	8.65	8.71
sodium	2.26	2.04	2.03	1.98	1.97	1.91	1.93
zinc (mg/kg)	66.98	142.50	144.30	148.70	149.20	143.80	144.50
copper (mg/kg)	6.67	18.61	18.42	20.30	20.43	20.22	20.11
iron (mg/kg)	149.20	145.80	149.20	165.30	166.20	164.50	166.10
glucosinolates (µmol/g)	6.37	0.001	0.002	0.001	0.002	0.001 a	0.004 b
tannins	4.76	2.19	2.34	2.21	2.35	2.17	2.39
lactic acid (mmol/l)	50.40	1.71 b	5.12 a	1.69 b	5.99 a	1.66 b	8.43 a
Calculated							
metabolizable energy ⁶ (MJ/kg)	12.27	12.30	12.30	12.60	12.60	12.60	12.70
FRSM = fermented rapeseed meal; $C_{\rm EP}$ = control sows in tion; $E_{\rm MPL}$ = experimental sows in mid-pregnancy and late lacta lactation. 'Sows up to 84 d of pregnancy and from 8 to 28 d o 'Sows from 85 to 100 d of pregnancy and from 8 to 28 d o 'Sows from 101 to 114 d of pregnancy and pto 4 7 of lac 'Mineral-vitamin premix provided the following in 1 kg d B_2 380 mg, vitamin B_6 400 mg, vitamin B_1 1 mg 800 mg, zinc 4,000 mg, manganese 2,000 mg, selenium 10 mg 800 mg, zinc 4,000 mg, and (E 236) 45 g, carrier (silicon dioxide), 430 g. a, b – different letters between $C_{\rm EP}$ vs $E_{\rm FL}C_{\rm MPL}$ vs $E_{\rm MPL}$ and "Metabolizable energy was calculated according to the equ	early pregnanc tion; $C_{LPL} = con$ if lactation. tation. tettion. (000 mcg, vitar , iodine 30 mg, iodine 30 mg, nhoric acid (E 3 nhoric acid (E 4	y; E _{tP} = experi tırol sows in la 220,000 IU, vi min H 10,000 r 138) 320 g, citi tote statisticall pote statisticall gessner and Rc	mental sows in ate pregnancy a amin D ₃ 80,000 neg, vitamin PI on mg, L-methi ric acid (E 330, y significant di oth (1983).	early pregnancy nd early lactation a carly lactation 1 U, vitamin E { 800 mg, vitami 9 110 g, fumaric fièrences at P<0.	; $C_{MPL} = control$); $E_{LPL} = experimination (1000 mg, vitamination) (1000 mg, vitamination) (1000 mg, chool mg, chool$	sows in mid-preg ental sows in late (K ₃ 100 mg, vitarr line 15,000 mg, i 00 mg. g, propionic acid	pregnancy and late lacta- pregnancy and early and so mg, vitamin ron 4,000 mg, copper (E 280) 45 g, formic

The piglets fed on the sows' milk and additionally received a prestarter diet. Prestarter feed (13.6 MJ ME, 215 g CP, total lysine 13.5 g) was available to the piglets *ad libitum* from d 10 of age and continued for 1 week after weaning. From the second week, the piglets were fed a starter diet (13.5 MJ ME, 207 g CP, total lysine 11.5 g). The diets for piglets did not contain FRSM, and their nutritional value and vitamin and mineral content were in accordance with NRC (2012) for piglets weighing 5 to 7 kg.

Experimental procedures

Blood samples were taken from 6 sows from each group in two periods: at 100 d of pregnancy (late pregnancy) and at 27 d of lactation (late lactation). Blood was always collected from the same animals. Blood from piglets was taken at 27 d of age (before weaning), from 2 piglets from each sow (one gilt and one barrow), taking into account the average body weight in the litter.

Blood analysis

The haematological parameters determined in whole blood were the white blood cell count (WBC) and the percentage composition of white blood cells (leukogram), i.e. the percentage of neutrophils (NEU), lymphocytes (LYM) and the sum of monocytes, eosinophils and basophils (MID). The determinations were made in an ABACUS-Vet analyser. The blood samples were immediately aliquoted into tubes containing heparin as an anticoagulant. The blood samples were centrifuged for 15 at $380 \times g$ and 4°C, and the resulting plasma was stored at -20°C until analysis. Plasma content of uric acid (UA), urea (UREA), creatinine (CREAT), and bilirubin (BIL) was determined by spectrophotometry using Cormay monotests.

The content of immunoglobulins IgA (cat. no. EP0076), IgG (cat. no. EP0084) and IgM (cat. no. EP0085) and interleukin 6 (IL-6) (cat. no. EP0099) in the blood plasma were determined using ELISA kits (Wuhan Fine Biotech Co., Ltd., China) and ELISA plate reader (spectrophotometric method). The total antioxidant potential of the plasma (FRAP), level of malondialdehyde (MDA), lipid hydroperoxide (LOOH), and vitamin C, activity of superoxide dismutase (SOD) and catalase (CAT) in the blood plasma was determined according to Czech et al. (2017).

Statistical analysis

The data on diets and blood parameters of the sows and piglets were subjected to statistical evaluation by two-factor analysis with interaction, taking into account the following factors:

$$y_{iik} = C_i + F_i + (C \times F)_{ii} + e_{iik}$$

where: y_{ijk} – observations; C_i – effect of reproductive cycle (primiparous gilts or multiparous sows); F_j – effect of feeding group (control or experimental – the effect of dried fermented rapeseed meal); $(C \times F)_{ij}$ – effect of interaction between reproductive cycle and diet; e_{ijk} – error. Statistical significance between treatments was based on P<0.05 and P<0.01. Analyses were performed in the GLM procedure of SAS 9.4 (SAS Institute, Cary NC). Correlation coefficients between the content of IgG, IgA and IgM

in blood plasma of pregnant sows, lactating sows and colostrum and their content in piglet's blood plasma was calculated using Pearson's correlation analysis.

Results

Effect of FRSM

In the blood plasma of pregnant sows fed diet with FRSM addition, higher FRAP value (P<0.001) and vitamin C content (P<0.001) and a lower content of MDA (P<0.001) and LOOH (P = 0.039) was noted than in the blood plasma of control sows. Primiparous and multiparous sows receiving feed with FSRM during pregnancy had higher plasma levels of UA (P = 0.011) than the control sows (Table 2). Higher IgG (P = 0.042) and lower IgM level (P = 0.037) was noted in the blood plasma of pregnant sows fed diet with FRSM addition compared to sows from control groups. In the blood of pregnant sows fed diet with FRSM addition, higher LYM count (P = 0.001), with a significantly lower count of NEU and NEU/LYM ratio (P<0.001, both) was noted than in the blood of control sows (Table 3).

Both primiparous and multiparous lactation sows whose feed included FRSM had higher CAT activity (P = 0.005), higher FRAP, and vitamin C content (P<0.001; P = 0.001, respectively), and lower UA content (P = 0.037) than the control sows (Table 4). All sows receiving a diet with FRSM during lactation had significantly higher level of IgG and IL-6 (P<0.001, both) in blood plasma compared to sows from control groups (Table 5).

Piglets born to sows fed diet with FRSM addition had significantly higher FRAP values (P<0.001), vitamin C and BIL content (P = 0.022; P = 0.004, respectively) and significantly lower MDA and UA content (P = 0.007; P = 0.009, respectively) in the blood plasma than piglets born to sows from control group (Table 6). Piglets born to primiparous and multiparous sows receiving feed with FRSM had a significantly higher WBC count (P<0.001), including LYM count (P = 0.007), with a significantly lower count of NEU and NEU:LYM ratio (P = 0.025; P = 0.040, respectively). In blood plasma of piglets born to sows receiving a diet with FRSM higher IgG and Il6 level (P<0.001, both) was noted compared to piglets born to sows from control group (Table 7).

Effect of reproductive cycle

Multiparous sows compared to primiparous sows had higher CAT activity (P<0.001), and higher vitamin C, LOOH, CREAT, and IgM content (P<0.001; P = 0.005; P<0.001; P<0.001, respectively) (Table 2, 3). Elevated FRAP (P = 0.011) and CREAT (P<0.001) levels and reduced MDA content (P = 0.001) were also observed in the plasma of the multiparous sows compared to primiparous sows during lactation (Table 4). Multiparous lactation sows compared to primiparous sows had a significantly lower WBC count (P = 0.006), and IgG and IgM content (P<0.001; P = 0.001, respectively) (Table 5). Piglets born to multiparous sows had higher FRAP values (P = 0.049), LOOH content (P = 0.046) and IgA (P = 0.009) content while lower MDA content (P = 0.041) compared to piglets born to primiparous sows (Table 6, 7).

		Tal	ble 2. Bioche	mical parame	sters in the pla	asma of pregna	int sows			
	SOD	CAT	FRAP	Vitamin C	MDA	LOOH	NA	UREA	CREAT	BIL
	(U/mL)	(U/mL)	(µmol/L)	(µmol/L)	(µmol/L)	(µmol/L)	(µmol/L)	(mmol/L)	(µmol/L)	(µmol/L)
C _G	79.19	2.76 b	5.85 c	19.59 c	7.60 a	2.59 ab	0.39	7.00 a	151.61 b	7.37 b
E_{G}	79.66	2.26 c	7.71 ab	27.39 b	5.15 b	2.08 b	0.51	5.49 b	163.20 b	6.39 bc
Cs	78.85	3.95 a	5.83 bc	26.80 b	8.16 a	3.21 a	0.37	7.21 a	212.92 a	9.41 a
Es	79.18	3.16 ab	8.34 a	32.30 a	5.80 b	2.66 ab	0.48	6.53 ab	214.90 a	5.70 c
SEM	0.156	0.139	0.254	1.021	0.280	0.110	0.021	0.213	7.780	0.303
Effect of F										
C	79.04	3.25	5.84	22.84	7.85	2.87	0.38	7.09	178.81	8.28
Е	79.44	2.65	8.07	29.27	5.45	2.36	0.49	5.96	187.30	6.07
Effect of reproductive cycle										
Ð	79.47	2.46	6.97	24.11	60.9	2.26	0.46	6.05	158.70	6.77
S	79.10	3.43	7.41	29.51	6.66	2.84	0.44	6.77	214.21	7.05
P-value										
F effect	0.283	0.060	<0.001	<0.001	<0.001	0.039	0.011	0.051	0.647	<0.001
R effect	0.203	<0.001	0.420	<0.001	0.346	0.005	0.632	0.105	<0.001	0.657
F×R interaction	0.939	0.736	0.534	0.479	0.419	0.530	0.260	0.062	0.678	<0.001
F, effect of FRSM; R, effer FSRM; C ₈ , control sows; E ₈ , s hyde; LOOH, lipid hydropero a, b, c – different letters ii	ect of reproduc cows receiving xide; UA, uric n the column c	tive cycle; F > feed with FS acid; UREA, lenote statistic	 R, interaction RM; SOD, sup urea; CREAT urea; sally significar 	a between expe peroxide dismu , creatinine; Bl at differences a	erimental facto utase; CAT, cat IL, bilirubin. at P≤0.05.	r (FRSM) and re ialase; FRAP, th	eproductive cycl e total antioxida	e; C _G , control int potential of	gilts; E _o , gilts rec î the plasma; MD	eiving feed with A, malondialde-

	T	able 3. Immune	ological parar	meters in the pl	asma of pregnant	SOWS			
	WBC	LYM	MID	NEU	NEU:LYM	IgG	IgA	IgM	IL-6
	(10%/L)	(%)	(%)	(%)	ratio	(mg/mL)	(mg/mL)	(mg/mL)	(pg/mL)
C _G	16.50 b	54.51 b	2.54 a	42.95 a	0.80 a	11.35	1.06 b	0.41	124.00
E_{G}	20.45 a	70.56 a	0.83 b	28.61 b	0.41 b	12.25	1.40 a	0.39	141.82
Cs	12.29 c	71.35 a	1.18 b	27.48 b	0.39 b	11.95	1.12 ab	0.609	121.91
Es	12.64 c	72.71 a	1.07 b	26.21 b	0.37 b	13.01	1.19 ab	0.52	133.31
SEM	0.814	1.762	0.176	1.653	0.041	1.210	0.049	0.019	4.151
Effect of F									
С	14.63	61.99	1.93	36.07	0.62	11.48	1.11	0.49	122.90
Ε	16.80	71.57	0.94	27.49	0.39	12.94	1.32	0.44	137.61
Effect of reproductive cycle									
G	18.93	64.39	1.48	34.13	0.56	11.91	1.26	0.40	131.51
S	12.51	72.22	1.11	26.67	0.38	12.54	1.18	0.55	128.60
P-value									
F effect	0.045	0.012	0.009	0.011	0.011	0.042	0.021	0.037	0.152
R effect	<0.001	0.029	0.319	0.026	0.027	0.231	0.326	<0.001	0.770
F×R interaction	0.037	<0.001	0.005	0.007	<0.001	0.723	0.041	0.702	0.698
$\label{eq:FSM} \begin{array}{l} F, effect of FRSM; R, effect of re FSRM; C_{s}, control sows; E_{s} sows rev IgC, class G immunoglobulins; IgA, a, b, c – different letters in the cc and the effect of the effe$	sproductive cycle; ceiving feed with class A immunogl	F × R, interactic FSRM; WBC, w obulins; IgM, cl stically significa	n between exp hite blood cell ass M immuno int differences	erimental factor is; LYM, lympho oglobulins; IL-6 at P≤0.05.	(FRSM) and reprc ocytes; MID, sum o , interleukin 6.	oductive cycle; C of monocytes, e	_G , control gilts osinophils and	; E _G , gilts rece basophils; NE	iving feed with U, neutrophils;

The effect of FRSM on health of pregnant sows and their offspring

		Tab	le 4. Biochem	nical parameter	rs in the plasm	a of lactating s	OWS			
	SOD	CAT	FRAP	Vitamin C	MDA	HOOH	UA	UREA	CREAT	BIL
	(U/mL)	(U/mL)	(µmol/L)	(µmol/L)	(µmol/L)	(µmol/L)	(µmol/L)	(mmol/L)	(µmol/L)	(µmol/L)
C_{G}	75.18	1.95	3.86	21.37	8.24	3.43	0.54	5.63 a	169.51	7.89 b
E_{G}	75.59	2.89	5.21	27.35	6.03	3.26	0.46	5.01 b	182.50	9.98 ab
$c_{\rm s}$	75.18	2.46	5.08	19.90	5.66	4.11	0.51	5.66 a	238.21	7.18 b
Es	75.23	3.24	6.80	25.26	4.31	4.10	0.56	5.21 ab	248.50	12.52 a
SEM	0.573	0.673	1.190	0.232	1.472	0.959	0.015	0.128	8.781	0.535
Effect of F										
С	75.18	2.26	4.61	20.57	6.70	3.84	0.53	5.65	203.91	7.54
Е	75.45	3.05	5.89	25.89	5.29	3.62	0.50	5.09	210.80	11.07
Effect of reproductive cycle	e (R)									
G	75.43	2.58	4.76	24.44	6.77	3.32	0.49	5.25	177.50	9.18
S	75.20	2.83	5.94	22.61	4.99	4.11	0.54	5.41	243.81	10.09
P-value										
F effect	0.363	0.005	<0.001	0.001	0.056	0.621	0.037	0.043	0.726	<0.001
R effect	0.334	0.337	0.011	0.076	0.001	0.056	0.140	0.041	<0.001	0.425
F×R interaction	0.518	0.717	0.547	0.444	0.204	0.834	0.257	0.012	0.678	<0.001
F, effect of FRSM; R, et with FSRM; C _s , control sows dialdehyde; LOOH, lipid hyd a, b – different letters in	fect of reprodu ; E_s , sows rece roperoxide; UA	ctive cycle; F iving feed with v, uric acid; UI iote statisticalli	× R, interactio h FSRM; SOD REA, urea; CR y significant di	nn between expe , superoxide dis EAT, creatinine fferences at P≤(erimental factor smutase; CAT, c ; BIL, bilirubin. 0.05.	(FRSM) and re atalase; FRAP,	productive cyo the total antiox	sle; C _G , contro cidant potentia	l gilts; E _G , gilts l of the plasma;	eceiving feed MDA, malon-

Table	5. Immunolc	ogical parame	sters in the pl	asma of lactatin	1g sows			
WBC (10%)	LYM	MID (20)	NEU	NEU:LYM	IgG	IgA (ma/m1)	IgM (ma/m1)	IL-6
(11/11)	(0/)	(0/)	(0/)	14110	(mg/mr)	(mil/giii)	(mg/m)	(July)
14.56	54.72	0.68	44.60	0.83	5.06	1.29 a	0.34	87.29
13.32	62.04	0.80	37.16	0.61	5.98	1.24 a	0.37	153.82
12.09	52.38	0.84	46.78	0.91	4.50	0.96 c	0.26	121.71
12.22	64.33	0.88	34.78	0.56	5.84	1.12 b	0.25	132.60
0.332	1.512	0.029	1.521	0.045	0.153	0.039	0.012	6.313
13.33	53.55	0.76	45.69	0.87	4.78	1.12	0.32	111.40
12.85	63.02	0.84	36.14	0.59	5.92	1.19	0.29	141.21
13.80	59.22	0.76	40.02	0.69	5.52	1.27	0.36	120.51
12.16	58.90	0.86	40.24	0.72	5.17	1.04	0.25	127.20
0.511	0.001	0.231	<0.001	<0.001	<0.001	0.494	0.455	<0.001
0.006	0.973	0.063	0.948	0.804	<0.001	0.051	0.001	0.609
0.260	0.356	0.080	0.367	0.422	0.082	0.001	0.149	0.428
ictive cycle; F ×] g feed with FSR A immunoglobul denote statistica	R, interaction ł M; WBC, whit ins; IgM, class Illv significant	oetween experi te blood cells; s M immunogl differences at	imental factor LYM, lympho lobulins; IL-6 P<0.05.	(FRSM) and rep ocytes; MID, surr , interleukin 6.	roductive cycle 1 of monocytes	;; C _G , control gi , eosinophils ar	lts; E _G , gilts rec id basophils; N	eiving feed with EU, neutrophils;
	Table WBC WBC 14.56 13.32 14.56 13.32 12.09 12.22 0.332 12.23 13.33 13.33 13.33 13.33 13.35 0.332 0.332 0.332 0.511 0.006 0.260 ctive cycle; F×1 ctive cycle; F×1 denot statistical denotes statistal denotes statistical denotes statistical denotes statis denote	Table 5. Immunolc WBC LYM (10 ⁹ /L) (%) 14.56 54.72 13.32 62.04 12.09 52.38 12.09 52.38 12.22 64.33 0.332 1.512 13.33 53.55 13.33 53.55 13.33 53.55 13.33 53.55 12.22 64.33 0.332 1.512 12.23 53.55 12.16 58.90 13.80 59.22 13.80 59.22 12.16 58.90 0.511 0.001 0.511 0.001 0.260 0.356 ctive cycle; F × R, interaction l 3 feed with FSRM; WBC, whith attimunoglobuling; fead, class denote statistically significant	Table 5. Immunological parame WBC LYM MID (10 ⁹ /L) (%) (%) 14.56 54.72 0.68 13.32 62.04 0.80 12.09 52.38 0.84 12.09 52.38 0.84 12.12 0.332 1.512 0.029 13.33 53.55 0.76 13.33 53.55 0.76 13.33 53.55 0.76 13.33 53.55 0.76 13.33 53.55 0.76 13.80 59.22 0.76 13.80 59.22 0.76 13.80 59.22 0.76 12.16 58.90 0.86 0.511 0.001 0.231 0.006 0.973 0.063 0.260 0.356 0.080 0.260 0.356 0.080 other event expert effection between expert effections at this blood cells; 4enote statistication between expert expertencestat the statistication between expert effection stat	Table 5. Immunological parameters in the pl WBC LYM MID NEU $(10^{9}/L)$ $(\%_6)$ $(\%_6)$ $(\%_6)$ $(\%_6)$ 14.56 54.72 0.68 44.60 $(\%_6)$ 14.56 54.72 0.68 44.60 $(\%_6)$ 13.32 62.04 0.80 37.16 $(\%_6)$ 12.20 64.33 0.84 46.78 $(\%_6)$ 12.22 64.33 0.84 46.78 (31.4) 12.22 64.33 0.84 46.78 (31.4) 12.23 63.02 0.84 46.78 (31.4) 12.23 53.55 0.76 45.69 (31.4) 12.16 58.90 0.84 36.14 (31.4) 12.16 58.90 0.76 40.02 (31.4) 12.41 0.001 0.231 (0.01) (0.24) 0.511 0.001 0.231 (0.01)	Table 5. Immunological parameters in the plasma of lactatii WBC LYM MID NEU NEU NEU $(10^{9}L)$ $(\%_{0})$ $(\%_{0})$ $(\%_{0})$ NEU NEU 14.56 54.72 0.68 44.60 0.83 ratio 13.32 62.04 0.80 37.16 0.61 ratio 13.32 62.04 0.80 37.16 0.61 ratio 12.22 64.33 0.84 46.78 0.91 ratio 12.22 64.33 0.88 34.78 0.56 0.945 12.22 64.33 0.88 34.78 0.56 0.945 0.332 1.512 0.029 1.521 0.045 0.76 12.225 64.33 0.88 34.78 0.56 0.76 12.222 0.351 0.221 0.029 0.76 0.76 13.33 53.55 0.76 40.02 0	Table 5. Immunological parameters in the plasma of lactating sows WBC LYM MID NEU NEU IgG (10 ^y L) (%) (%) (%) NEU NEU IgG/mL) 14.56 54.72 0.68 44.60 0.83 5.06 13.32 62.04 0.80 37.16 0.61 5.98 12.20 64.33 0.84 46.78 0.91 4.50 12.22 64.33 0.88 34.78 0.56 5.84 0.332 1.512 0.029 1.521 0.045 0.153 12.22 64.33 0.88 34.78 0.56 5.84 0.332 1.512 0.029 1.521 0.045 5.92 13.33 53.55 0.76 45.69 0.87 4.78 13.33 53.55 0.76 45.69 5.92 13.33 53.55 0.76 40.02 6.069 5.92 13.38 5922 0.76 <t< td=""><td>Table 5. Immunological parameters in the plasma of lactating sows WBC LYM MID NEU NEU:LYM IgG IgA $(10^{0}/L)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $1gG$ $1gA$ 14.56 54.72 0.68 44.60 0.83 5.06 1.29 a 13.32 62.04 0.80 37.16 0.61 5.98 1.24 a 12.29 54.73 0.88 34.78 0.56 5.84 1.12 b 12.20 64.33 0.88 34.78 0.56 5.84 1.12 b 12.22 64.33 0.88 34.78 0.56 5.84 1.12 b 0.332 1.512 0.029 1.521 0.045 0.153 0.039 13.33 53.55 0.76 45.69 0.87 4.78 1.12 13.33 53.25 0.76 40.24 0.59 5.92 1.94</td><td>Table 5. Immunological parameters in the plasma of lactating sows NEU NEU:LYM IgA IgM/mID WBC LYM MID NEU NEU:LYM IgA IgM/mIL 14.56 54.72 0.68 44.60 0.83 5.06 1.29 a 0.34 14.56 54.72 0.68 44.60 0.83 5.06 1.29 a 0.34 13.32 62.04 0.80 37.16 0.61 5.98 1.24 a 0.37 12.09 52.38 0.84 46.78 0.91 4.50 0.26 0.25 12.02 64.33 0.88 34.78 0.56 5.84 1.12 b 0.25 0.332 1.512 0.029 1.521 0.045 0.153 0.012 13.33 53.55 0.76 45.69 0.87 4.78 1.12 0.26 13.33 53.55 0.76 45.69 0.87 5.92 1.19 0.26 1</td></t<>	Table 5. Immunological parameters in the plasma of lactating sows WBC LYM MID NEU NEU:LYM IgG IgA $(10^{0}/L)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $1gG$ $1gA$ 14.56 54.72 0.68 44.60 0.83 5.06 1.29 a 13.32 62.04 0.80 37.16 0.61 5.98 1.24 a 12.29 54.73 0.88 34.78 0.56 5.84 1.12 b 12.20 64.33 0.88 34.78 0.56 5.84 1.12 b 12.22 64.33 0.88 34.78 0.56 5.84 1.12 b 0.332 1.512 0.029 1.521 0.045 0.153 0.039 13.33 53.55 0.76 45.69 0.87 4.78 1.12 13.33 53.25 0.76 40.24 0.59 5.92 1.94	Table 5. Immunological parameters in the plasma of lactating sows NEU NEU:LYM IgA IgM/mID WBC LYM MID NEU NEU:LYM IgA IgM/mIL 14.56 54.72 0.68 44.60 0.83 5.06 1.29 a 0.34 14.56 54.72 0.68 44.60 0.83 5.06 1.29 a 0.34 13.32 62.04 0.80 37.16 0.61 5.98 1.24 a 0.37 12.09 52.38 0.84 46.78 0.91 4.50 0.26 0.25 12.02 64.33 0.88 34.78 0.56 5.84 1.12 b 0.25 0.332 1.512 0.029 1.521 0.045 0.153 0.012 13.33 53.55 0.76 45.69 0.87 4.78 1.12 0.26 13.33 53.55 0.76 45.69 0.87 5.92 1.19 0.26 1

	SOD (1/ml)	CAT (T/m)	FRAP	Vitamin C	MDA (UL)	HOOH	UA (IND	UREA	CREAT	BIL
		(UIIIL)	(µ1101/17)	(1101111)	(1/10111H)	(1110111T)	(110111n)		(1101111)	(1101111)
C _G	75.22	3.40	6.86	23.54	9.21	4.54	0.30	5.25	115.31	12.51
E _G	75.35	4.82	10.53	28.16	6.75	3.36	0.21	4.87	135.92	16.64
c	75.32	3.52	7.79	21.43	7.98	5.02	0.29	5.11	112.60	12.84
Es	76.14	4.64	11.27	27.71	5.55	4.04	0.26	5.63	126.91	15.39
SEM	0.119	0.163	0.393	0.254	0.273	0.266	0.012	0.168	4.492	0.591
Effect of F										
С	75.27	3.46	7.32	22.50	8.60	4.78	0.29	5.18	114.00	12.70
Е	75.68	4.74	10.81	27.91	6.25	3.63	0.23	5.18	132.21	16.13
Effect of reproductive cycle (F	(1									
G	75.30	4.29	9.15	25.83	7.67	3.80	0.26	5.00	128.21	15.11
S	75.76	4.13	99.66	24.58	6.67	4.49	0.27	5.39	120.30	14.22
P-value										
F effect	0.124	0.051	<0.001	0.022	0.007	0.057	0.009	0.997	0.060	0.004
R effect	0.067	0.648	0.049	0.097	0.041	0.046	0.323	0.286	0.413	0.485
F×R interaction	0.601	0.685	0.108	0.100	0.143	0.515	0.211	0.201	0.721	0.473

_

	Tab	ole 7. Immuno	ological para	ameters in the	e plasma of pigle	ts			
	WBC	TYM (200	MID (200	NEU (002)	NEU:LYM	IgG	IgA (mc/m1)	IgM MgI	IL-6
	(10/1)	(0/)	(0/_)	(0%)	Taulo	(mg/mL)	(mg/mL)	(mg/mL)	(Dg/mL)
C _G	14.62	58.87	2.55	38.58	0.69	5.80 bc	0.19 c	0.33	87.42 c
E _G	17.96	69.27	1.65	29.07	0.43	6.42 ab	0.23 bc	0.32	167.32 a
Cs	15.91	63.18	2.97	33.85	0.54	5.44 c	0.24 ab	0.34	127.61 b
Es	18.60	69.84	2.09	28.07	0.44	6.87 a	0.27 a	0.32	149.91 ab
SEM	0.354	1.572	0.209	1.593	0.042	0.160	0.009	0.005	7.982
Effect of F									
C	15.26	61.03	2.76	36.22	0.62	5.62	0.21	0.33	107.51
Ε	18.22	69.51	1.83	28.66	0.43	6.64	0.25	0.32	155.61
Effect of reproductive cycle (R)									
Ð	16.69	65.37	1.99	32.64	0.53	6.11	0.21	0.32	138.80
S	17.36	66.77	2.49	30.74	0.49	6.16	0.26	0.33	124.41
P-value									
F effect	<0.001	0.007	0.057	0.025	0.040	<0.001	0.034	0.086	<0.001
R effect	0.395	0.680	0.259	0.579	0.682	0.890	0.009	0.666	0.379
F×R interaction	0.071	0.521	0.981	0.542	0.324	0.850	0.005	0.659	0.228
F, effect of FRSM; R, effect of reprod FSRM; C _s control sows; E _s sows receivin IgG, class G immunoglobulins; IgA, class a, b, c – different letters in the colums	luctive cycle; F × R ng feed with FSRM s A immunoglobulir n denote statisticall	, interaction be [; WBC, white ns; IgM, class] y significant d	etween exper- blood cells; M immunogl ifferences at	imental factor LYM, lympho lobulins; IL-6, P≤0.05.	(FRSM) and reprecytes; MID, sum either interleukin 6.	oductive cycle; ' of monocytes, e	C _G , control gilt. osinophils and	s; E _G , gilts rece basophils; NE	iving feed with U, neutrophils;

The effect of FRSM on health of pregnant sows and their offspring

Interaction FRSM × reproductive cycle

Two-way ANOVA showed FRSM × reproductive cycle interactions for BIL level (P<0.001), IgA level (P = 0.041), WBC (P = 0.037), LYM (P <0.001), MID (P = 0.005), NEU count (P = 0.007) and NEU:LYM ratio (P <0.001) in blood plasma of pregnant sows. Multiparous pregnant sows receiving feed with FRSM (E_s) had lower BIL level than multiparous pregnant sows from control group (C_s). Such an effect was not observed in primiparous pregnant sows (Table 2). Primiparous pregnant sows from control group the pregnant sows from control group (C_s). Such an effect was not observed in PRSM (E_g) had higher WBC, LYM count, and IgA level and lower MID, NEU count and NEU:LYM ratio than primiparous pregnant sows from control group (C_g). Such an effect was not observed in multiparous pregnant sows from control group (C_g). Such an effect was not observed in multiparous pregnant sows from control group (C_g). Such an effect was not observed in multiparous pregnant sows from control group (C_g). Such an effect was not observed in multiparous pregnant sows from control group (C_g). Such an effect was not observed in multiparous pregnant sows from control group (C_g). Such an effect was not observed in multiparous pregnant sows (Table 3).

Two-way ANOVA showed also FRSM × reproductive cycle interactions for UREA (P = 0.012), BIL (P<0.001), and IgA content (P = 0.001) in blood plasma of lactation sows. Primiparous lactation sows receiving feed with FRSM (E_G) had lower UREA level than primiparous lactation sows from control group (C_G). Such an effect was not observed in multiparous lactation sows (Table 4). Multiparous lactation sows receiving feed with FRSM (E_S) had higher BIL and IgA level than multiparous lactation sows from control group (C_S). Such an effect was not observed in primiparous lactation sows (Table 5).

	C _G	E _G	Cs	Es
Pregnant sows vs piglets		·		
IgG	-0.876*	0.643*	0.906*	0.849*
Iga	-0.300	0.620*	-0.786*	-0.457
IgM	0.844*	-0.682	-0.122	0.339
Lactating sows vs piglets				
IgG	0.281	0.791*	-0.119	0.797*
Iga	0.536	-0.689	-0.036	-0.337
IgM	0.220	0.481	-0.071	-0.020
Colostrum ¹ vs piglets				
IgG	0.202	0.800*	0.474	0.002
IgA	-0.270	0.776*	0.154	0.081
IgM	-0.730*	0.703*	-0.298	0.376

Table 8. Correlation coefficients between the content of IgG, IgA and IgM in blood plasma of pregnant sows, lactating sows and colostrum and their content in piglet's blood plasma

*Correlation is significant at P<0.05.

¹The results for calculating this correlation were taken from the publication by Grela et al. (2019) presenting results from the same experiment.

The assessment of the correlation coefficient between the content of IgG, IgA and IgM immunoglobulins in the blood plasma of primiparous sows receiving FRSM (E_G) and the amount of these immunoglobulins in the blood plasma of piglets from

 E_{G} sows shows that there was a significantly positive correlation between IgG and IgA. A significant positive correlation regarding IgG was found in multiparous sows vs piglets in both the C_{s} and E_{s} groups. In the group of sows receiving fermented rapeseed meal (E_{G} and E_{s}), a significantly positive correlation was also found between the amount of IgG in the blood plasma of lactating sows and the amount of these immunoglobulins in the blood plasma of piglets. Moreover, a significant positive correlation was also found in the case of the content of all analyzed immunoglobulins between their content in the colostrum from the element receiving FRSM (E_{G}) and the blood plasma of piglets from these sows (Table 8).

Discussion

The addition of FRSM component in diets significantly improves production parameters, mainly in primiparous gilts, leading to an increase in litter size and in litter weight at 28 d of age. It also helps to improve the digestibility of crude protein, fat and crude fiber (especially gilts during late pregnancy) and stimulates the immune system, which improves the health of piglets, reducing diarrhoea severity (Grela et al., 2019). The inclusion of fermented components in diets as a source of probiotic microorganisms (lactic acid bacteria), as well as short-chain fatty acids (including lactic acid), facilitates digestive tract function and improves nutrient availability (Wang et al., 2012). Research conducted by Grela et al. (2019) shows that the addition of a fermented rapeseed component to diets helped to improve the digestibility of crude protein (by up to 2.6%), fat and crude fibre and positively affected the gut microbiota of sows (especially gilts during late pregnancy). This is especially important in sows during pregnancy and lactation, which are often accompanied by a limited capacity for food intake (Guillemet et al., 2006). This is due in part to stress resulting from the body's adaptation to changes in its physiological condition, accompanied by significant hormonal changes. Dynamic adaptive changes (anatomical, physiological and metabolic) taking place in sows during pregnancy, farrowing or weaning lead to oxidative stress, manifested by the generation of excessive reactive oxygen species (ROS). ROS not only can damage protein, lipid or DNA structures, but may cause gastrointestinal disorders as well (Yin et al., 2014).

Supported by exogenous antioxidants derived from fermented feed, the endogenous antioxidant system can compensate for excessive lipid peroxide production in the perinatal period and effectively protect against the effects of oxidative stress (Castillo et al., 2005). The increase in CAT activity in lactating sows fed a diet with FRSM and their piglets, as well as the increase in the FRAP in our experiment, reflects an improvement in their antioxidant status. The increase in FRAP induced by the addition of the fermented component coincided with higher plasma concentration of vitamin C. It follows that the increased concentration of low-molecular-weight antioxidant was an important factor determining the total antioxidant potential of the plasma and thus the ability to scavenge free radicals. The effect of the fermented component on the content of other low-molecular-weight antioxidants that make up the FRAP value, such as UREA, CREAT or BIL, as well as on the activity of the antioxidant enzyme superoxide dismutase (SOD), was unclear (Ceriello et al., 1997). Stecchini et al. (2001) suggest that this may be due to the type of probiotic bacteria used, e.g. for the fermentation process. Most of them are involved in the synthesis of superoxide dismutase, which breaks down superoxide radicals to oxygen and hydrogen peroxide. Some species of lactic acid bacteria can synthesize catalase, which destroys hydrogen peroxide very rapidly and blocks the formation of peroxyl radicals (Knauf et al., 1992). Other species of lactobacilli produce non-enzymatic antioxidants, such as glutathione and thioredoxin, which are involved in the reduction of reactive oxygen intermediates (De Vos, 1996). Studies by Cai et al. (2014) and Wang et al. (2012) have found a greater ability to scavenge free radicals, including an increase in the activity of antioxidant enzymes, in the blood plasma of suckling and weaned piglets following the introduction of *Lactobacilli* sp. to the diet of sows.

Oxidative stress during pregnancy may result in impairment of the female immune system, which directly affects immunity in the offspring (Casanueva and Viteri, 2003). This effect was seen in our experiment in the control piglets (reduced lymphocyte count in favour of neutrophils and reduced plasma IgG titres). Weakening of the immune system may contribute to more frequent inflammation, leading to the activation of macro- and microphages, which produce large amounts of reactive oxygen species while fighting pathogens (Casanueva and Viteri, 2003). This can be slowed by supporting the immune system, e.g. with properly selected feed components. The addition of antioxidants or probiotics (Liu et al., 2018) or, as in our experiment, the inclusion of a fermented component in the diet, supports the production of lymphocytes and IgA and IgG immunoglobulins in pregnant sows. The stimulation of immune processes noted in both pregnant and lactating primiparous sows fed a diet with dried fermented rapeseed meal and in their piglets resulted in an increase in the number of lymphocytes produced in the bone marrow and entering the blood. The increase in lymphocyte counts in pregnant primiparous sows was accompanied by an increase in the level of class A secretory immunoglobulins. However, there were no changes in the level of IgM, whose role in the protection of mucous membranes is much smaller than that of IgA (Nagler-Anderson et al., 2001). These two immunoglobulins are closely linked and dependent on the continuous stimulation of mucosal immune cells by commensal intestinal bacteria, including lactic acid bacteria (Lactobacillus), such as those supplied with fermented feed (Nagler-Anderson et al., 2001). Studies by Campbell et al. (2013) indicate stimulation of the immune system to synthesize immunoglobulins, at both the local and systemic level, following the introduction of lactic acid bacteria into the body (e.g. with fermented feed). A high immunoglobulin titre in piglets may result from intensive utilization of maternal immunoglobulins, a higher immunoglobulin titre in the colostrum, or an immune response to an infection (Cai et al., 2014). This is highly beneficial, especially for newborn piglets, because their intestinal microbiota is not yet fully developed, and they lack their own specific immunity to protect them against environmental infections (Czech et al., 2010). Piglet resistance to infection is transmitted through the placenta and later the mother's milk, so an improvement in the sow's immune status improves immunity in her offspring (Czech et al., 2010; Grela et al., 2019). Our study indicated a significantly positive correlation between the content of immunoglobulins of both IgG, IgA and IgM classes in the colostrum of primiparous sows versus their content in the blood plasma of their piglets. In the colostrum of sows fed a diet including dried fermented rapeseed meal (Grela et al., 2019), a significant increase in the level of IgG by approx. 31% in multiparous and 40% in primiparous sows and IgM by about 2% in multiparous and 23% in primiparous sows was noted. This corresponded to a higher titre of these immunoglobulins in the blood plasma and was consistent with a study by Rooke and Bland (2002). Fermentation of rapeseed meal is an effective way to increase the level of lactic acid in diets, as well as to stimulate the immune system, which improves the health of piglets, reduce diarrhoea severity (by 72% in piglets born to multiparous sows and by 145% in piglets born to primiparous sows) and mortality (by 9.4% in piglets born to multiparous sows and by 141% in piglets born to primiparous sows) (Grela et al., 2019).

Conclusion

The inclusion of dried fermented rapeseed meal in the diet of sows stimulates antioxidant processes in primiparous and multiparous sows and in their piglets. This is responsible for stimulation of the immune system (increased LYM counts and IgG titres in the blood plasma). The inclusion of FRSM in the diet may be decisive in the maintenance of a specific balance between the humoral and cellular response, thus limiting the development of inflammation and atopy and enhancing immunoglobulin synthesis in the mother's body. Diet prepared with fermented rapeseed meal for pregnant sows, and especially lactating sows, also significantly improves acquired immunity by the offspring, as seen in the significant increase in IgG titres in the blood plasma. Our research on the use of dried fermented rapeseed meal in the diet of sows, particularly primiparous sows, is very promising. The use of greater amounts of this component in feed should be considered so as to limit the use of GMO plants.

Conflict of interest

We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

References

- C a i C.J., C a i P.P., H o u C.L., Z e n g X.F., Q i a o S.Y. (2014). Administration of *Lactobacillus fer*mentum 15007 to young piglets improved their health and growth. J. Anim. Feed Sci., 23: 222–227.
- Campbell M., Crenshaw J.D., Polo J. (2013). The biological stress of early weaned piglets. J. Anim. Sci. Biotech., 4: 1–8.
- Canibe N., Jensen B.B. (2012). Fermented liquid feed microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed Sci. Technol., 173: 17–40.

Casanueva E., Viteri F.E. (2003). Iron and oxidative stress in pregnancy. J. Nutr., 133: 1700–1708.

- Castillo C., Hernandez J., Bravo A., Lopez-Alonso M., Pereira V., Benedito J.L. (2005). Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J., 169: 286–292.
- Ceriello A., Bortolotti N., Falleti E., Taboga C., Tonutti L., Crescentini A., Motz E., Lizzio S., Russo A., Bartoli E. (1997). Total radical-trapping antioxidant parameter in NIDDM patients. Diab. Care, 20: 194–197.

- Czech A., Grela E.R. (2004). Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase. Anim. Feed Sci. Technol., 116: 211–223.
- C z e c h A., G r e l a E.R., M o k r z y c k a A., P e j s a k Z. (2010). Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci., 13: 525–531.
- C z e c h A., O g n i k K., L a s z e w s k a M., S e m b r a t o w i c z I. (2017). The effect of raw and extruded linseed on the chemical composition, lipid profile and redox status of meat of turkey hens. Anim. Sci. Pap. Rep., 35: 57–69.
- Czech A., Grela E.R., Kiesz M., Kłys S. (2020). Biochemical and haematological blood parameters of sows and piglets fed a diet with a dried fermented rapeseed meal. Ann. Anim. Sci., 20: 535–550.
- De Vos W.M. (1996). Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 70: 223–242.
- Declerck I., Dewulf J., Piepers S., Decaluwé R., Maes D. (2015). Sow and litter factors influencing colostrum yield and nutritional composition. J. Anim. Sci., 93: 1309–1317.
- Gao J., Zhang H.J., Wu S.G., Yu S.H., Yoon I., Moore D. (2009). Effect of *Saccharomyces cerevisiae* fermentation product on immune functions of broilers challenged with *Eimeria tenella*. Poultry Sci., 88: 2141–2151.
- Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). The effects of a fermented rapeseed meal additive on reproductive performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373–379.
- Guillemet R., Dourmad J.Y., Meunier-Salaun M.C. (2006). Feeding behaviour in primiparous lactating sows: Impact of a high-fiber diet during pregnancy. J. Anim. Sci., 84: 2474–2481.
- Jakobsen G.V., Jensen B.B., Bach Knudsen K.E., Brooks N. (2015). Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim. Feed Sci. Technol., 208: 198–213.
- J h a R., L et er m e P. (2012). Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal, 6: 603–611.
- Kirchgessner M., Roth F.X. (1983). Schätzgleichungen zur Ermittlung des energetischen Futterwertes von Mischfuttermitteln für Schweine. Anim. Physiol. Anim. Nutr., 50: 270–275.
- K n a u f H.J., Vo g e l R.F., H a m m e s W.P. (1992). Cloning, sequencing, and phenotypic expression of *katA*, which encodes the catalase of *Lactobacillus sake* LTH677. Appl. Environ. Microbiol., 58: 832–839.
- Liu K., Wu W., Li B., Wei W., Liu Z., Liu H. (2018). Changes in oxidative stress status in sows from days 100 of gestation to post-partum estrus. Pakis. Vet. J., 38: 165–168.
- Missotten J.A.M., Michiels J., Degroote J., De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. J. Anim. Sci. Biotechnol., 6: 4.
- Nagler-Anderson C., Terhorst C., Bhan A.K., Podolsky D.K. (2001). Mucosal antigen presentation and the control of tolerance and immunity. Trend Immun., 22: 120–122.
- NRS (2012). Nutrient Requirements of Swine. 11th rev. ed. Washington, D.C. National Academies Press.
- R o o k e J.A., B l a n d I.M. (2002). The acquisition of passive immunity in the new born piglet. Livest. Prod. Sci., 78: 13–23.
- Stecchini M.L., Torre M.D., Munari M. (2001). Determination of peroxy radical scavenging of lactic acid bacteria. Int. J. Food Microbiol., 64: 183–188.
- S u g i h a r t o S., R a n j i t k a r S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr., 5: 1–10.
- To maszewska E., Muszyński S., Dobrowolski P., Kamiński D., Czech A., Grela E.R., Wiącek D., Tomczyk-Warunek A. (2019). Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest. Sci., 224: 60–68.
- Wang J., Ji H.F., Wang S.X., Zhang D.Y., Liu H., Shan D.C., Wang Y.M. (2012). Lactobacillus plantarum ZLP001: In vitro assessment of antioxidant capacity and effect on growth

performance and antioxidant status in weaning piglets. Asian-Australas J. Anim. Sci., 25: 1153-1158.

Yin J., Wu M.M., Xiao H., Ren W.K., Duan J.L., Yang G., Li T.J., Yin Y.L. (2014). Development of an antioxidant system after early weaning in piglets. J. Anim. Sci., 92: 612–619.

Received: 15 IX 2020 Accepted: 28 IV 2021