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Abstract 

To reduce the damage of mechanical parts during machining, a tool wear prediction method based on the SVM-Clara 

model is proposed. By analyzing the support vector machine (SVM) and Clara algorithm, using regular prediction data 

or unobservable data, the average dissimilarity of all objects is concentrated, and the characteristics of the overall data 

are accurately represented. Randomly select data samples from the overall data samples according to a certain proportion, 

and standardize them to improve the clustering quality. Find the best objective function to minimize the damage function 

and make the predicted value closer to the actual value. Through experiments, it is proved that the method in this paper 

can accurately predict the tool wear condition, the mean square error value is 0.03, the prediction method is better, and 

the production efficiency is ensured. 
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1 Introduction 

In machining, cutting [1] is the most common machining method, so cutting tools have a special 

effect on the performance of machine tools. Its service life has a great impact on the quality of 

mechanical products [2], and will also cause corresponding fluctuations in its process and economic 

benefits [3]. Severe tool wear can cause tool damage, and tool damage can cause parts to be scrapped 

[4], thereby damaging expensive instruments. To make matters worse, the normal operation of the 

machine is affected. Therefore, the prediction of tool wear and damage status has become a hot 

research topic. 

During machining, strong friction, and extrusion occur between the tool and the chip [5], which 

causes wear. Tool wear can lead to reduced tool life, reduced surface quality, and increased material 

loss. Therefore, the wear of cutting tools plays a key role in increasing productivity [6] and improving 

product quality. Based on studying the rationality of the geometric parameters of cutting tools, it is 

necessary to observe the wear conditions of cutting tools and analyze their causes, which is very 

necessary for in-depth research on the wear laws of cutting tools. 

Wear of cutting tools is a vague phenomenon [7], which will be affected by factors such as 

environment and instruments during the acquisition process. Therefore, it is very meaningful to 

analyze and predict the tool wear state and combine randomness and fuzzy to identify and predict the 

tool wear state. Many scholars at home and abroad have established different models to predict tool 

wear. Reference [8] uses ADNLSSVM to establish a dynamic model of tool wear, extracts feature 

vectors from the data set of the open database of the milling process through time-frequency domain 

analysis, and selects parts through correlation analysis. The feature vector is used as the model input 

to monitor the tool wear state. Reference [9] proposed a tool wear prediction method based on the 

uncertainty cloud inference model. The inverse cloud algorithm was used to calculate the three cloud 

characteristic parameters of the tool wear acoustic emission signal, and the relationship between the 

wear trend in different wear stages and the cloud characteristic parameters in different wear stages 

was mined. A multi-condition single-rule wear prediction model is established. Reference [10] used 

a three-dimensional mechanical frequency-domain chatter model to consider the effect of tool wear 

and proposed a new formula to simulate the process of damping force along the nonlinear tool 

geometry, and to simulate the chip cross-sectional area by analyzing the axial and radial 

displacements, determine the stability boundary under different cutting conditions and different flank 

wear states. [8-10] 

There are two main types of tool wear: ordinary wear and abnormal wear. When the tool is designed 

and used properly [11], and the machining and grinding quality meet the requirements, wear will 

gradually occur during cutting. The common wear of the tool is divided into three kinds of wear: 

front, rear, and rear. Abnormal wear, also known as tool damage, is generally an abnormal failure 

[12]. While the tool is in use, when the tool is worn to a certain extent, it will no longer be usable. 

This wear limitation is called the passivation of the tool [13]. The durability of the tool refers to the 

entire process from the start of cutting to the level of passivation. The lower the grinding rate, the 

longer the tool life. Therefore, tool life is a good evaluation tool. There are usually two ways to 

determine the tool durability: one is to determine the tool durability from the angle with the shortest 

cutting time of the workpiece, that is, the maximum labor intensity [14]. The second approach is to 

determine the durability of the tool based on the minimum cost of machining the part, that is, the 

minimum cost of durability. The lowest durability is usually used in production. When the production 

task is relatively tight or the production is unbalanced, the lowest durability can be selected. 

In the research of tool wear prediction technology, there are many reliable experimental data which 

is the premise of technical research [15]. In different machining conditions, different tool wear, 
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different machining methods, different materials, different materials, different tool materials, these 

are very difficult. Therefore, an ideal prediction method must have the ability to learn, diffuse [16] 

and adapt to changes in the external environment [17] to finally realize the industrial application of 

tool wear prediction. In this paper, an SVM model is mainly established by the Clara algorithm to 

predict the wear of the tool, and it is verified by experiments that the relative error prediction of the 

tool wear predicted by this method is reduced to 0.5371. It can be seen from the data that the SVM-

Clara model proposed in this paper has high accuracy and strong practicability. 

2 SVM Model Principle and Clara Algorithm Analysis 

2.1 Principle of the SVM Model 

Support vector machines (SVMs) have great advantages for solving small-sample, nonlinear, and 

high-dimensional pattern recognition [18]. It starts with observational data, looks for patterns 

contained in it, and uses those patterns to predict future or unobservable data. It solves some basic 

problems in the case of limited samples of statistical learning theory to a large extent, such as model 

selection problems, nonlinear and dimensionality curse problems, and local [19] minima problems, 

which has quickly attracted the attention of various fields and Research Interests [20]. People have 

carried out in-depth theoretical and applied research on it and achieved many results [21]. 

The basic idea of SVM is to find a hyperplane that can separate [22] all samples and maximize the 

separation distance in a multidimensional space i.e. the optimal hyperplane. The support vector 

machine regression model starts from the spatial transformation and builds a regression model for 

prediction based on the principle of structural risk minimization. Its principles are as follows: 

It is known that a set of sample sets {( , )}D X Y= , nX R , Y R , ( )X  is a nonlinear 

transformation, which maps the original space nR  to the high-dimensional feature space  , and 

constructs the optimal regression function. 

 ( ) ( ) , ,nf X X b X R Y R=  +    (1) 

The regression estimation problem is defined as the problem of minimizing the risk of a loss function. 

According to the principle of structural risk minimization, parameters   and b  can be obtained by 

solving equation (3). 
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In the formula: C  is the penalty [23] parameter, and an appropriate constant is taken to control the 

degree of the penalty of the sample to exceed the error limit. Considering the allowable regression 

error, i
 +

, i
 −

 slack variables are introduced.   Insensitive loss function. 
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For the quadratic optimization problem of formula (3), the Lagrangian multiplier is introduced to 

construct the Lagrangian functional, and the dual problem of the original problem is obtained. 
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Its constraints: 
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Solving can get a regression function: 

 
( ) ( )( )
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( ) ( ) ,
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n
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 (6) 

To avoid the curse of dimensionality problem in the high-dimensional feature space of [24], it is 

necessary to choose the kernel function ( ),
i j

k x x
 to be equivalent to the inner product form 

( ) ( )i j
x x 

 of the high-dimensional space, to solve the high-dimensional computational problem 

ingeniously. The RBF function is most widely used due to its excellent local approximation properties 

[25]. The expression formula of radial basis kernel function (RBF) is: 

 
( )

2

22, 1,2, ,
i jx x

i j
k x x e i n

−
−

= =
 (7) 

2.2 Clara's algorithm 

Instead of finding representative objects from the entire dataset, the Clara algorithm selects the center 

point from the sample using the reset [26] cost calculation method from the sample in the dataset. If 

the sample is randomly selected, it should represent the original dataset. However, the sampling 

method is not guaranteed to be truly random, and the clustering quality is based on the average 

dissimilarity of all objects in the entire dataset [27], not just the average dissimilarity of these objects 

over the sample. To get a better approximation, Clara takes multiple samples and takes the best cluster 

as output [28]. To improve the efficiency of spatial clustering, the Clara algorithm randomly selects 

40 2k+  number of spatial object data for spatial clustering ( k  is the desired number of clusters). 

Therefore, the samples can be sampled v  times and the best clustering result can be output as the 

output. 

The basic idea of the Clara algorithm is to randomly sample all the data, and then use some data 

samples to express the overall data. Second, the PAM method is used for segmentation [29], and 

atypical objects are repeatedly used to replace typical objects, substitution cost is used to determine 

the replacement, and finally, the overall cluster quality is obtained. Using this method, random 

sampling is performed repeatedly, and a clustering scheme with better clustering quality 

competitiveness is selected. In the case of a large number and size of samples, the scheme can 

represent the clustering scheme of the whole data and can accurately represent the characteristics of 

the whole data under the condition of tolerance of [30] deviation. Figure 1 shows the basic steps of 

the Clara algorithm. 
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Randomly extract 

some data
Select cluster center PAM clustering

Choose the best 

clustering scheme
output result

Cycle repeat set times

 

Figure 1. Clara algorithm steps 

3 Data preprocessing 

3.1 A random sampling of data 

To reduce the scale of processed data [31], data samples are randomly selected in a certain proportion 

from the overall data samples. The sample size of the extracted data is shown in equation (8). 

 

A
N


=

 (8) 

Among them, A  is the overall data sample size, and   is the reduction multiple of the cluster data 

scale. 

Randomly selected data were normalized and mapped to a range of 0–1 to remove the effects of [32] 

physical meaning and dimensional differences among different variables. 

 

min

max min

x x
x

x x

−
=

−
 (9) 

In the formula, x  is the data before normalization, x  is the data after normalization, and max
x  and 

min
x  represent the maximum and minimum values of such data, respectively. 

3.2 K-means clustering to get the initial cluster center 

The PAM method randomly selects the initial cluster center, which has the disadvantage of a large 

amount of computation. Therefore, a K-means clustering method is introduced to obtain the initial 

cluster centers of the PAM method. Since the PAM method clustering can be performed after K-

means clustering, only coarser cluster centers [33] need to be obtained by K-means clustering. 

Combining the K-means clustering method with the PAM method improves computational accuracy 

and speed [34]. 

3.3 PAM cluster analysis method 

The N K−  non-central data in the selected dataset are divided into cluster classes of K  data centers 

based on the nearest Euclidean distance between the non-central data and the data center. The 

Euclidean distance is calculated as shown in equation (10): 
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 1,2, ,n N K= − ; 1,2, ,k K=  (11) 

Where 𝑥𝑛 is the n -th data vector, the dimension is J , and 𝑥𝑛𝑗 is the m -dimensional data value of 

the n -th data vector. 𝑐𝑘 is the k -th data center, and 𝑐𝑘𝑚 is the m -dimensional data value of the k -

th data center. ( ),
n k

d x c  is the Euclidean distance between the non-central data vector 𝑥𝑛 and the 

central data vector 𝑐𝑘. 

When the central data is replaced by the non-central data, the replacement cost is calculated to 

determine whether the replacement helps to improve the clustering quality. The calculation formula 

of the replacement cost is shown in Equation (12): 
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 1,2, ,n N K= − ; 1,2, ,k K=  (13) 

In the formula, E(𝑥𝑛, 𝑐𝑘) is the replacement cost of non-central data 𝑥𝑛 instead of central data 𝑐𝑘; 

𝑒𝑖𝑛𝑘 is the replacement cost of non-representative point 𝑥𝑖 when non-central data 𝑥𝑛  replaces central 

data 𝑐𝑘. Its calculation method is as follows: 

(1) When 𝑥𝑖  is the cluster class of 𝑐𝑘: 
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Where 𝑐𝑖
𝑠𝑢𝑏 is the second neighborhood center data of 𝑥𝑖, which is a non-representative [35] point. 

(2) When i
x

 is the cluster class of 
( )

l
c l k

: 

 

( ) ( )

( ) ( ) ( ) ( )
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, , , , ,

i l i n

ink
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e
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= 

− 
  (15) 

When the replacement cost is less than 0, it indicates that the replacement operation [36] is beneficial 

to improve the clustering quality. Therefore, when the following conditions are met, the replacement 

operation of [37] non-central data 𝑥𝑛 to replace central data 𝑐𝑘 is performed. 

 
( ), 0

n k
E x c 

 (16) 

Repeat the above steps to calculate the replacement cost, and determine whether to perform the 

replacement operation, until the replacement cost of all non-central data to replace the central data is 

greater than 0. 

4 Tool wear prediction based on the SVM-Clara model 

The linear  -insensitive [38] damage function is defined as: 
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In the above formula, | ( ) |y f x


−  is the value of the damage function, and if there is | ( ) |y f x −  , 

the damage function can be regarded as 0. 

Given a set ( ) 
1

, , ,
l

n

i i i i i
S x y x R y R

=
=   , find the best objective function ( )f x  to minimize the 

damage function, that is, let the predicted value of the SVM model under the Clara algorithm be 

closer to the actual value. The function ( )f x  can be expressed by equation (18): 

 ( ) ( )Tf x w x b= +  (18) 

Using the SVM model, the optimization problem corresponding to function[39] ( )f x   is: 
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Observing equations (19) and (20), it can be seen that the two equations have obvious differences in 

the constraints [40] conditions, so the corresponding functions of the two equations also have obvious 

differences. 
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The optimal numerical condition in formula (21) is: 
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Writing Equation (22) in matrix form and eliminating the intermediate variables w  and e , Equation 

(23) can be obtained: 

 
1

0 1 0

1
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+       yΩ I
 (23) 



Yi Yang and Liang Sun. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-14 8 

( ),
ij i j

K x x =  in formula (23). Solving equation (23) can get the function: 
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In formula (24), the matrix form of ( 1,2, , )
i

i l =  and b  are: 
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 (26) 

In tool wear prediction, there are many uncertain factors in the cutting process, so there is often a 

certain error between the predicted wear amount and the actual wear amount. The size of the error 

can be used to measure the accuracy of the prediction. Common mistakes are calculated as follows: 

(1) Relative error 
i

RE : 

 

100
j j

i

i

v
RE

v

 −
= 

 (27) 

(2) Average relative error MRE: 
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1
100

T
i i

i
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v
M
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v
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T =

−
= 

  (28) 

(3) Mean square error MSE and mean square error RMSE: 

 
( )

2
'

1

1 r

i i
i

MSE
T

 
=

= −

 (29) 

 RMSE MSE=
 (30) 

In the above formula, 
i

  and '

i
  respectively represent the actual wear value and predicted value at 

time i . 

5 Experiments and experimental results 

This paper will be based on the tool prediction model of SVM-Clara, and the experiments show that 

the prediction model proposed in this paper is more practical. 

Based on the SVM model, Clara algorithm, and SVM-Clara prediction model, the classification and 

prediction of variable parameter milling tool wear state will be studied. Select 30 wear parameters 

for each set of tool wear signals. Then, for each signal sample, a new feature is extracted from the 
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coefficient of variation (CV) to form a new feature vector sample with feature mean, standard 

deviation, and peak value. After generating new eigenvector samples, three models are used to 

classify and predict tool wear status based on these eigenvector samples. Due to the different 

influence laws of the feed per tooth and the cutting width on the force signal, the influence on the 

features extracted from the force signal is also different. Next, the classification and prediction of tool 

wear states for variable tooth feed and variable width of cut are investigated, respectively. 

Since the traditional support vector machine model is proposed for binary classification problems, it 

cannot be directly applied to multi-classification (the number of categories is greater than 2), so multi-

class support vector machine models must be selected when dealing with multi-classification 

problems. This paper adopts a one-to-many classification model. At this point, multiple categories 

must be numerically encoded. The specific coding format is shown in the following table. 

Table 1. Correspondence of tool wear and code 

State of wear State one State two State three State four 

Coding [-1,-1] [-1,1] [1,-1] [1,1] 

After encoding, the new feature vector samples need to be segmented. This paper uses the randperm 

of the MATLAB random function to generate a random number sequence from 1 to 30 and then 

divides the 30 eigenvector samples corresponding to each tool wear state at each feed rate into two 

parts. The feature vector samples corresponding to the first 15 numbers generated by randperm are 

used as the training sample set, and the feature vector samples corresponding to the last 15 numbers 

are used as the verification sample set. Then, for each feed rate, based on the above training sample 

set and validation sample set, the SVM grid cross-validation method is used to optimize the model 

parameters. The optimized model parameters are shown in the table below. 

Table 2. Model optimization parameters at different feed rates 

 fz=0.10mm fz=0.12mm fz=0.14mm fz=0.16mm 

Penalty factor C  0.2617 0.2146 0.0674 0.0609 

After obtaining the model optimization parameters, the 30 new feature vector samples corresponding 

to fz=0.10mm in each wear state were randomly divided into 4 groups with 7 samples in each group. 

One group of samples is selected for training in turn, and the remaining three groups of samples are 

used for 4 times of verification and recognition. Based on the features under this set of cutting 

parameters, the average classification accuracy obtained from the 4 validations was used as the model 

classification accuracy. Likewise, 4-fold cross-validation was performed on the eigenvector samples 

under the other three sets of cutting parameters, and 4-fold cross-validation was performed according 

to the model optimization parameters under the feature. Figure 2 shows a comparison of the average 

classification and recognition accuracy of cross-validation using the three methods, respectively, after 

optimizing the model parameters using the new feature vector samples. 
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Figure 2. The average classification and recognition accuracy of cross-validation of the model under fixed 

cutting parameters 

In the figure, fz1, fz2, fz3, and fz4 indicate that the feed rate per tooth is 0.10mm/tooth, 0.12mm/tooth, 

0.14mm/tooth, and 0.16mm/tooth, respectively. As can be seen from the above figure, when the 

cutting parameters are fixed, the classification and recognition effect of the prediction method in this 

paper is very ideal (the classification accuracy reaches more than 96%). 

To simulate a cutting simulation experiment, to fully train the hybrid model, the tool wear data were 

recorded every 30 steps, and a total of 37 experimental data were recorded. The 37 sets of data 

obtained were divided into a training set and a test set, the first 27 data were selected as the mixed 

model training set, and the last 10 data  28,29, 37
t

x t =   was used as the test set. The specific 

modeling process and training prediction of the hybrid model is realized by programming on 

MATLAB software. This paper does not describe the algorithm program and specific calculation 

process of the hybrid model in detail, only the corresponding calculation results are given. 

Modeling and forecasting are performed according to the SVM model approach described above. The 

tool wear data is clustered by the Clara algorithm, and the corresponding regression coefficient 

estimates 
1

0.7063̂ = − , 
2

0.4874̂ = − , 
3

0.5578̂ = − , 
4

0.2977̂ = − , and 
5

0.2268̂ = −  are 

obtained after the difference is obtained according to the correlation function, and the prediction is 

made and compared with the predicted value. Subtract the simulated value from its corresponding 

value to obtain the residual sequence, then reconstruct the one-dimensional residual into a five-

dimensional Gaussian process regression parameter through MATLAB software, and finally add the 

predicted values of the two models to obtain the predicted value of the mixed model. 
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Figure 3. Residuals between actual and predicted values 

Figure 3 is the difference between simulated and predicted mixed models. As shown, the remaining 

maximum value is 3.628e-006. Figure 3 is a relatively wrong prediction point. The results show that 

the largest relative error is 0.5371. Figure 3 shows that the established model is in good agreement 

with the simulation results, indicating that the proposed hybrid model can predict tool wear well. 

 

Figure 4. Relative error of predicted points 

 

To quantify the prediction performance of the SVM-Clara model, four indicators of absolute mean 

square error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), and root 

mean square error (RMSE) was used. The SVM-Clara model was compared with other models, and 

the results are shown in Table 3. It can be seen from Table 3 that the four error evaluation criteria of 
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the SVM-Clara model are the smallest, which also shows that the SVM-Clara model is better than 

the other two models in predicting tool rake wear. 

Table 3. Error comparison results of the four models 

Model MAE MSE MAPE RMSE 

SVM Model 1.59274e-7 0.2463 3.3672e-14 1.75567e-7 

Clara's Algorithm 3.26074e-7 0.5409 3.5726e-13 5.48035e-7 

SVM-Clara Model 1.47396e-7 0.2236 3.2974e-14 1.69674e-7 

Through the above comparative study on the tool prediction model based on SVM-Clara and the 

variable parameter milling tool wear state prediction model based on SVM, it can be seen that the 

SVM-Clara tool prediction model proposed in this paper is better than the SVM variable parameter 

milling tool wear state prediction model. It is more suitable for predicting the degree of tool wear. 

6 Conclusion 

In actual operation, to predict the use effect of the tool more intuitively, the service life of the tool 

can be improved and the safety of the tool can be enhanced. Using the Clara algorithm, the SVM 

prediction model of tool wear is established. Compared with the traditional prediction model, the 

mean square error of the SVM-Clara model is nearly 0.03 lower than the prediction value of other 

models, and the relative error prediction is reduced to 0.5371. 

On this basis, the tool wear simulation test is carried out and compared with the measured results. 

The results show that the SVM-Clara model can better predict the tool surface wear, which proves 

that the establishment of the SVM-Clara model is reasonable and accurate. It provides a reliable basis 

for improving tool life and reducing machining costs. 
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