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Abstract
Different types of number theories such as elementary number theory, algebraic number theory and computational number
theory; algebra; cryptology; security and also other scientific fields like artificial intelligence use applications of quadratic
fields. Quadratic fields can be separated into two parts such as imaginary quadratic fields and real quadratic fields. To work
or determine the structure of real quadratic fields is more difficult than the imaginary one.
The Dirichlet class number formula is defined as a special case of a more general class number formula satisfying any types
of number field. It includes regulator, L -function, Dedekind zeta function and discriminant for the field. The Dirichlet’s
class number h(d) formula in real quadratic fields claims that we have

h(d) .logεd =
√

∆.L (1, χd)

for positive d > 0 and the fundamental unit εd of Q
(√

d
)
. It is seen that discriminant, L -function and fundamental unit

εd are significant and necessary tools for determining the structure of real quadratic fields.
The focus of this paper is to determine structure of some special real quadratic fields for d > 0 and d ≡ 2,3 (mod4). In this
paper, we provide a handy technique so as to calculate particular continued fraction expansion of integral basis element
wd , fundamental unit εd , and so on for such real quadratic number fields. In this paper, we get fascinating results in the
development of real quadratic fields.
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1 Introduction and Preliminaries Section

Structure of Q
(√

d
)

real quadratic number fields depend on the d > 0 positive non-square integer. It means
that we have two different structures whether d ≡ 2,3(mod4) or d ≡ 1(mod4).

In this brief paper, we focus on certain types of Q
(√

d
)

real quadratic fields for d ≡ 2,3(mod4) positive
non-square integers. We define an integer sequence and determine such fields from parameterization of positive
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non-square integers d by using defined integer sequence. These types of real quadratic number fields contain the
special written continued fraction expansion of the integral basis element wd such as

[
γ0;11, 11, . . . ,11, 2γ0

]
,

where period length is represented by l = l (d) of wd .
We also demonstrate fundamental units of such fields in the case of d ≡ 2,3(mod4). All the results help us

to get a practical and handy method to calculate continued fraction expansions and fundamental units.
We refer all references [1-21] to readers for more information on the structure of quadratic fields.
In this section, we give following basic notations to use in our Main Results section.

Definition 1.1. Let {ℵi} be an integer sequence. It is defined by the recurrence relation

ℵi = 11ℵi−1 +ℵi−2

with the seed values ℵ0 = 0 and ℵ1 = 1 for i≥ 2.
Lemma 1.1. Let d be a square-free positive integer such that d ≡ 2,3(mod4). If we put wd =

√
d and γ0 =

√
d

into wR = γ0 +wd , then we get wd /∈ R(d) but wR ∈ R (d).
Furthermore, for the period l = l (d) of wR, we have continued fraction expansion of wR =[

2γ0,γ1,γ2, . . . , γl(d)−1
]

as pur-periodic and continued fraction expansion of wd as periodic wd =[
γ0; γ1,γ2, . . . , γl(d)−1, 2γ0

]
. Besides, let

wR =
wRPl +Pl−1

wRQl +Ql−1
=
[

2γ0,γ1,γ2, . . . , γl(d)−1,wR
]

be a modular automorphism of wR. Then, the fundamental unit εd of
(√

d
)

real quadratic number field is given
by the following formula:

εd =
td +ud

√
d

2
=
(

γ0 +
√

d
)

Ql(d)+Ql(d)−1

td = 2γ0Ql(d)+2Ql(d)−1 and ud = 2Ql(d)

where Qi is determined by Q0 = 0, Q1 = 1 and Qi+1=γiQi +Qi−1 for i≥ 1.
Note. I (d) is a set of all quadratic irrational numbers in

(√
d
)

. α in I (d) is reduced if α > 1 and −1 < α ′ < 0
(α ′ is the conjugate of α). R(d) is also a set of all reduced quadratic irrational numbers in I (d). Besides, for
any number α , R(d) is purely periodic in the continued fraction expansion.

2 Main Results

In this section, we give two theorems and two corollaries, which carry out the main aim of the brief paper.
Theorem 2.1. Let d be a square-free positive integer and ` ≥ 2 be a positive integer such that it is not divided
by three. Supposing that the parameterization of d is

d =

(
11+(2J+1)ℵ`

2

)2

+(2J+1)ℵ`−1 +1

where J ≥ 0 is a positive integer.
If `≡ 2, 4, 5 (mod6) and J ≥ 0 is a even positive integer, then d ≡ 2,3 (mod4) . Besides, we obtain

wd =

(2J+1)ℵ`+11
2

;11,11, . . . ,11︸ ︷︷ ︸
`−1

,(2J+1)ℵ`+11


with `= `(d) for d ≡ 2,3(mod4). Furthermore, we have the fundamental unit εd as follows:

εd =

(
11+(2J+1)ℵ`

2
ℵ`+ℵ`−1

)
+ℵ`

√
d.
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Theorem 2.2. Assume that d is a square-free positive integer, period length is `≥ 2 and 3 /| `. The parameteri-
zation of d is given by

d =

(
11+(2J+1)ℵ`

2

)2

+(2J+1)ℵ`−1 +1

where J ≥ 0 is a positive integer. If ` ≡ 1 (mod6) and J is odd positive integer, then d ≡ 2(mod4). Also, we
have same form of the wd defined in Theorem 2.1, while `= `(d) and d ≡ 2(mod4). In addition, we obtain the
coefficients of fundamental unit td and ud as follows:

td = (2+1)ℵ2
` +11ℵ`+2ℵ`−1 and ud = 2ℵ`.

Corollary 2.1.Let d be square-free positive integer and ` ≥ 2 be a positive integer satisfying the conditions

of Theorem 2.1. Let the parameterization of d be defined as d =
(

11+ℵ`
2

)2
+ℵ`−1 + 1. Then, we obtain d ≡

2,3(mod4), and the continued fraction expansion of wd is given by

wd =

11+ℵ`

2
;11, 11, . . . , 11︸ ︷︷ ︸

`−1

,11+ℵ`


for `= `(d). Also, we get the fundamental unit as εd =

(
11+ℵ`

2 +
√

d
)

ℵ`+ℵ`−1.
Proof. It is obtained by Theorem 2.1, if we chose J = 0. By the way, we prepare the following table, which
includes some of infinite numerical examples considering condition `≡ 2, 4, 5 (mod6) for Corollary 2.1.

Table 1 Numerical Results for Corollary 2.1.

d `(d) wd εd

123 2
[
11;11, 22

]
122 + 11

√
123

465247 4
[
682;11,11, 11, 1364

]
922868 + 1353

√
465247

56371418 5
[
7508;11,11, 11,11, 15016

]
112658893 + 15005

√
56371418

104722907208735 8
[
10233421;11,11, . . . ,11, 20466842

] 209445700004344 +
20466801

√
104722907208735

Corollary 2.2. Let d be a square-free positive integer and ` > 1 and `≡ 5(mod6). Assume that the parameteri-
zation of d is given by

d =

(
11+3ℵ`

2

)2

+3ℵ`−1 +1

Then, we obtain d ≡ 2(mod4) and

wd =

11+3ℵ`

2
;11,11, . . . ,11︸ ︷︷ ︸

`−1

,11+3ℵ`


for `= `(d). Also, we obtain following equation for the coefficient of fundamental units td andud .

td = 3ℵ2
` +11ℵ`+2ℵ`−1 and ud = 2ℵ`

Proof. We get this corollary from Theorem 2.2 if J is chosen as J = 1. Besides, we prepare the following
table, which contains several of infinite numeric illustrations under the conditions of ` > 1 and `≡ 1 (mod6) for
Corollary 2.2. We cannot write `= 7 in the table since d = 763180879250 has a square factor.
Remark. Readers can see that the real quadratic fields depend on two different parameters such as period
length `= `(d) and J ≥ 0 integer. So, we can determine infinitely many real quadratic number fields with their
structures if we change the values of these parameters.
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Table 2 Numerical Results for Corollary 2.2.
d `(d) wd εd

26525631841181822843479178 13
[
5150304053275 ;11, 11, . . . , 11, 10300608106550

] 17683754560768687845706259+
3433536035513

√
26525631841181822843479178

3 Conclusion

In the topic of real quadratic fields, there are some tools such as fundamental unit and continued fraction
expansion That are useful for determining structures of such fields. The main aim of this paper was to provide a
practical method to calculate fundamental unit rapidly and simply for such real quadratic number fields. We are
sure that this paper will be useful for readers.
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