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Abstract – Machine learning (ML) methods are nowadays 
widely used to automate geophysical study. Some of ML 
algorithms are used to solve lithological classification problems 
during uranium mining process.  One of the key aspects of using 
classical ML methods is causing data features and estimating their 
influence on the classification. This paper presents a quantitative 
assessment of the impact of expert opinions on the classification 
process. In other words, we have prepared the data, identified the 
experts and performed a series of experiments with and without 
taking into account the fact that the expert identifier is supplied to 
the input of the automatic classifier during training and testing. 
Feedforward artificial neural network (ANN) has been used as a 
classifier. The results of the experiments show that the 
“knowledge” of the ANN of which expert interpreted the data 
improves the quality of the automatic classification in terms of 
accuracy (by 5 %) and recall (by 20 %). However, due to the fact 
that the input parameters of the model may depend on each other, 
the SHapley Additive exPlanations (SHAP) method has been used 
to further assess the impact of expert identifier. SHAP has allowed 
assessing the degree of parameter influence. It has revealed that 
the expert ID is at least two times more influential than any of the 
other input parameters of the neural network. This circumstance 
imposes significant restrictions on the application of ANNs to solve 
the task of lithological classification at the uranium deposits. 

 
Keywords – Assessment of expert influence, lithology, machine 

learning, SHAP, uranium mining.  

I. INTRODUCTION 
Kazakhstan provides about 39 % of the world uranium 

production [1]. Production is carried out by in-situ leaching. In 
this method, uranium is extracted through a network of 
pumping-in and pumping-out wells, along which the leaching 
solution circulates. The purpose of the Geophysical Data 
Interpretation for Boreholes (GDIB) in this case is not only to 
determine the position of the ore body, but also to identify the 
type and parameters of the enclosing rocks, their filtration 
properties. Since the extraction process is carried out by 
spreading the leaching solution, the isolation of impermeable 
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and permeable rocks, the determination of their filtration 
properties are critically important.   

At the same time, accurate lithological interpretation can be 
carried out only taking into account all available data for the 
given well, on neighbouring wells, and also taking into account 
the information obtained at the exploration stage [2]. 
Obviously, an accurate interpretation requires experience and 
time, while the extraction technology requires prompt decision-
making. 

Erroneous and inaccurate results from geophysical data 
analysis may lead to serious financial loses on different levels: 
from an overall decrease in the quantity of active boreholes to 
unjustified labour cost and low volume production.  

The most complete information on the host rocks and their 
filtration properties can be obtained by a joint analysis of 
geophysical logging data based on various physical principles. 
There is no exhaustive theory for automatic lithological 
interpretation, which takes into account all types of logging, and 
it is unlikely that such a theory can be developed. Interpretation 
of logging data is a complex and poorly formalised task, 
especially if one tries to take into account all the parameters and 
their mutual influence, geological cross-sections and data 
obtained during the exploration phase. Statistical methods and 
machine learning are successfully used to solve such problems. 
From the point of view of machine learning, the majority of 
geophysical problems, in particular the problem of lithological 
interpretation, when it is necessary to determine the type of rock 
based on the recorded physical parameters, is a classification 
problem. 

Different classifiers were successfully tested for GDIB 
interpretation automation on uranium deposits of 
Kazakhstan [3].  

However, the success of data interpretation processes heavily 
depends on properly prepared input data. The accuracy of 
automated log data classification to a great extent depends on 
expert’s manual assessment because it is used as input for 
training machine learning (ML) automatic classifiers and also 
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as an etalon for comparison. However, cross-comparison of 
assessments for core sampling provided by different experts 
shows significant discrepancies (Table I). Specifically, the 
difference between assessments is higher for permeable rocks 
(e.g., sands have more deviations in manual classification than 
clays). In this paper, we aim to capture the nature of this 
phenomenon and to propose some measures to take it into 
account while applying artificial neural network (ANN) that is 
trained on input data assessed by experts.  

The paper is organised as follows. Section 1 provides a 
literature review, with delineation of known issues for ANN 
classification of log data from uranium mines. In Section 2, the 
problem of inconsistency of expert’s assessments is described. 
Section 3 provides the proposed method of dealing with 
inconsistency of expert’s assessments. Section 4 demonstrates 
results of application of interpreter’s ID and SHAP. In 
Section 5, conclusions, with summary of results and 
recommendations for the next set of analytical experiments 
design are given. 

II. RELATED WORK 
 ANN is a part of large research area named machine learning 

[4]. ML has been successfully used to solve problems of cluster 
analysis and classification using a wide range of algorithms, 
including number of ANN types [5]. 

Since 1970, the artificial neural network modelling has been 
widely used in petrography to analyse lithologic log data, 
evaluate geo-mineral resources, make deep seismic sounding, 
and perform many other geophysical analyses [6]–[16]. 
Dr Kostikov thoroughly describes methods for geophysical data 
interpretation of boreholes based on transformation of log 
diagrams using a multi-layer neural network [17]. Several 
publications demonstrate the application of feedforward neural 
network for interpretation of geophysical data from uranium 
deposits [18]–[20].  

There are a number of publications focused on tasks and 
issues related to automatic interpretation of log data from 
uranium deposits. For example, results of analytical testing with 
ANN as an approach for log data classification can be found in 
publications [21]–[23], while several ML methods and their 
comparative results are described in publications [24], [25]. 
There, it has been shown that a feedforward neural network 
demonstrates a much better classification quality when 
compared to k-nearest neighbour (k-NN) or support vector 
machine (SVM) algorithms. Furthermore, results from a 
combination of ML algorithms applied to a similar underlaying 
task are reviewed in publications [26], [27]. The above-
mentioned challenges 2 and 4 have been addressed during our 
analytical experiments. 

Our earlier experiments demonstrated that, on average, the 
automatic classification with a feedforward neural network 
performs at ~55 % accuracy [28]. It was also shown that 
ambiguity of expert assessment had a negative effect on auto-
classification accuracy. Therefore, this particular study is 
focused on challenge #1: the evaluation of the impact the expert 
assessment of electric logging has on auto-classifiers, and more 
specifically on neural networks – during ML training.  

To validate and confirm our hypothesis about a negative 
impact of expert opinion on interpretation accuracy, we tackled 
it from several angles. Firstly, we defined the range of values 
for auto-classifiers by using a synthetic dataset [28]. Then, we 
evaluated inconsistency of expert opinions in geophysical data 
assessment using one specific example. Thirdly, we calculated 
ANN qualitative indicators for two large datasets with 
subsequent assessment by various experts. 

III. PROBLEM 
Inconsistency of expert assessment introduces additional 

difficulties into the process of ML system training. Despite the 
fact that expert assessments are used for training, each expert 
does classification differently. Three boreholes with 
identification numbers 2100, 2104, and 4939 were used for 
expert assessment quality comparison. Log-data for these 
boreholes were assigned to three independent experts, named 
here D, L, and T. Moreover, boreholes 2100 and 4939 have 
actual core sampling data. The four main indicators of quality 
(accuracy, recall, precision, and Kappa) were calculated based 
on the assessment data for lithologic differentiation and core 
sampling received from experts D, L, and T. It was done as pair-
wise comparison, when one of the experts was considered a 
standard and the other one – variable (Table I).  The average 
value for experts’ accuracy is 0.67 with scatter score F1 = 0.6. 
When similar comparison is done between core sampling and 
expert assessment, the accuracy is 0.5 and F1 score is 0.27. At 
the same time, taking into consideration expert biases, 
assessment of boreholes 2100 and 2104 done by experts D and 
L has the highest agreement (accuracy > 0.8). Expert D has the 
highest accuracy when compared with an average core value for 
borehole 2100 (accuracy 0.69), and experts D and T are in good 
agreement for borehole 4939 assessment (accuracy 0.77). For 
borehole 4939, the average core value is well aligned with the 
assessment by expert L (accuracy = 0.60). When comparison is 
done between expert assessment and core sampling, the quality 
values are significantly lower than comparison is done between 
experts. Our analysis showed that for some critical lithotypes 
(e.g., claystone) expert assessments aligned by 70–95 %, yet 
they much less agreed with core sampling data. For claystone 
extraction the core and expert assessment correlated by 30–
50 %. This is largely due to critical requirement for in-situ 
leaching processing to define impenetrable lithotypes because 
uranium fields in Kazakhstan are comprised primarily by sands, 
claystone, siltstones, and sandstones.  

It is known that clay exhibits minimal apparent resistivity 
(AR) and maximal spontaneous polarization (SP) values, which 
simplifies its identification. On the other hand, definition of 
various sub-layers in penetrable lithologic types (e.g., sub-
layers of mixed sand at the medium sand layer) is not critical 
from a technological point of view and can easily be substituted 
by the biased opinion of an individual expert. 

Comparison of expert assessments suggests several options 
for observed inconsistency minimisation. One of them could be 
grouping borehole data assessed by the one and the same expert 
only. Another option is to use one of the experts as an 
identification (ID) parameter for ML training. 
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TABLE I 

PAIR-WISE COMPARISON 
Experts  Accuracy Kappa Recall Precision T1 Score 

2100 

D vs L 0.81 0.70 0.63 0.61 0.6180 

D vs T 0.71 0.54 0.42 0.49 0.4553 

L vs T 0.80 0.67 0.46 0.52 0.4930 

4939 

D vs L 0.3317 0.16 0.5979 0.4975 0.5430 

D vs T 0.7706 0.66 0.7941 0.6879 0.7371 

L vs T 0.3762 0.19 0.6086 0.5495 0.5775 

2104 

D vs L 0.8409 0.76 0.8445 0.8205 0.8323 

D vs T 0.6551 0.49 0.5493 0.5424 0.5458 

L vs T 0.7213 0.57 0.5845 0.6011 0.5926 

Experts average 0.67 0.53 0.61 0.59 0.60 

2100 

Core vs D 0.693 0.39 0.3624 0.3487 0.3554 

Core vs L 0.6444 0.23 0.2775 0.2423 0.2587 

Core vs T 0.6505 0.21 0.274 0.2441 0.2581 

4939 

Core vs D 0.1749 0.04 0.2011 0.2295 0.2143 

Core vs L 0.6089 0.37 0.3066 0.3986 0.3465 

Core vs T 0.2096 0.04 0.2004 0.2231 0.2111 

Core average 0.50 0.21 0.27 0.28 0.27 
 

To perform automatic classification, it is necessary to select 
the type of classifier and its parameters. The results of work of 
several types of classifiers as applied to the logging data are 
given in Appendix (https://drive.google.com/open?id=1al9QqJ
GydtAwNzapWribV3rBPzkSPdvC) [28]. The evaluation of the 
classifier parameters allows us to conclude that ANN and 
XGBoost demonstrate the best classification results. The same 
three boreholes were interpreted with a feedforward ANN with 
26 input neurons (depth, coordinates, floating windows for AR 
and SP curves) and two hidden layers built using Keras library 
[29]. 

Log curves, after preliminary normalization, were presented 
as floating windows because for the accurate lithotype 
definition not only the value in a given point was important, but 
the curve shape itself (extremes, curvatures) was a key criterion. 
In addition, it was decided to add geographic coordinates of 
boreholes as training parameters, because lithologic structures 
of neighbouring boreholes were well correlated (this fact was 
also used by experts in defining lithotypes). This approach 
allowed us to achieve accuracy of identification comparable to 
the expert assessment of core sampling (Table II). However, for 
impenetrable layers (claystone, siltstone) in core boreholes the 
accuracy of ANN algorithm is lower than expert assessment: 
precision = 0.30, and recall = 0.22. (Table III), i.e., the majority 

of impenetrable layers, critical from a technological point of 
view, are still poorly identified. 

TABLE II 
EXPERT ASSESSMENT OF CORE SAMPLING  

 
Overall, low accuracy of assessment for these boreholes by 

both experts and ANN model can be explained by the fact that 
data interpretation was performed not based on log curve shapes 
as per regular procedure, but based on core sampling 
(description, laboratory samples), i.e., – the required input 
information was available neither to experts nor for ANN 
model. 

The outcome of this experiment led us to an assumption that 
quality metrics for automatic classification would largely 
depend on the data analysis method used by an expert. 
 

Outputs from ANN 
Algorithm for Core 
Borehole number 

Accuracy Precision Recall T1 Score 

2100 0.4273 0.4623 0.2701 0.3409 
2104 0.7053 0.7961 0.6053 0.6877 
4939 0.3277 0.2573 0.1181 0.1619 

Average 0.5092 0.5069 0.3409 0.4076 
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TABLE III 

PAIR-WISE COMPARISON 

Borehole 
Number 

Expert D Expert L Expert Т ANN 

Precision Recall Precision Recall Precision Recall Precision Recall 

2100 0.3182 0.7000 0.2727 0.5455 0.2727 0.5455 0.4516 0.4375 

2104 Comparison impossible as data belong to different horizons 

4939 0.4146 0.3366 0.4146 0.3301 0.3049 0.2907 0.1613 0.0060 

Average 0.3664 0.5183 0.3437 0.4378 0.2888 0.4181 0.3064 0.2275 

 
 

IV. ACCOUNTING METHOD OF EXPERT ASSESSMENTS 
INCONSISTENCY 

During the analysis of well interpretation performed by three 
different experts, the following hypothesis was formulated: 
Expert estimates often do not agree with each other, and this is 
most relevant to the interpretation of all types of rocks. When 
only permeable rocks are singled out, the experts agree with 
each other much better. Inconsistency of expert estimations has 
a strong negative effect on the quality of classifiers’ work and 
it should be considered. 

To test this hypothesis, we performed experiments with data 
from “Budennovskoe” minefield: 57 boreholes were 
interpreted/assessed by expert C, and 40 boreholes – by 
expert E. 

Data processing includes preprocessing, training and 
assessment of the quality indicators of the classifier. 
Feedforward artificial neural networks were used as a classifier.  

After linear normalization, logging data were fed to the input 
of ANN in the form of a “floating window” (Fig. 1). 

The use of “floating data windows” is a common method of 
analysing data sequences, for example, time series or, as in our 
case, the dependence of recorded physical parameters on the 
depth. Since the expert takes into account the form of the 
logging curve when evaluating the data, it is reasonable to 
submit to the input data in a form of floating window with the 
size of n + 1 + n points, i.e., n measurements above, the current 
value and n measurements below the current value are 
considered. The next window is formed in a similar way, 
shifting one point below. 

Since the logging probe length is 1 meter, which corresponds 
to 10 depth measurements, it is natural to set n = 5. Presenting 
data in the form of a floating window allows, to some extent, 
taking into account the form of the curve, and not just the value 
of recorded parameter at a specific depth. 

The boreholes were divided into training and test sets in the 
ratio of 80/20 (%) (77/20). It should be noted that for the correct 
division into training and test sets in this case it was impossible 
to use sklearn.model_selection.train_test_split or similar 
functions due to the presence of a floating window. 

The network topology was largely determined by the dataset. 
Since the dataset included data from two logs (AR and SP), the 
network had 23 inputs (due to the floating window, each type 
of logging was fed to 11 inputs, also one input was for depth). 

The number of outlets was determined by the number of types 
of rocks allocated – 8. The network had two hidden layers. 

 

Fig. 1. Floating data window. 

To assess the impact of an expert identifier, it is desirable to 
interpret the constructed machine learning model in order to 
answer the question “Why did one or another result of 
classification or regression occur?”. 

In particular, there are examples of models, when some 
features of the dataset led to the correct classification results for 
a specific case, while the model itself was in general completely 
wrong and the results were based on illogical features from the 
dataset [30]. That work describes the task of text classification 
between atheistic and religious content, when it turned out that 
the model correctly distinguished the former from the latter, but 
not based on content of the texts, but based on the presence of 
the word “posting”, which occurred only two times in texts of 
religious content, although it was very common (21 %) in the 
training set. 

In other words, an algorithm is needed that will help answer 
the question “Which variables and within what limits affect the 
prediction?” This allows us to make sure that the model does 
not overfit and that it does not generate a result in a random 
way. 

The ideal interpretation may be, for example, when the 
general response of the model is the sum of the values of the 
parameters (X set) multiplied by the model coefficients (Θ set): 

 0 1 1 2 2 ... n nh x x xθ = θ + θ + θ + + θ , (1) 
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where iθ ∈Θ , ix X∈ , hθ  – a hypothesis function of a linear 
regression model. 

In this case, it is easy to understand how individual features 
influence the result. In terms of explaining the result, linear 
regression models are easily interpretable. 

However, this approach is not always possible. In the case of 
complex non-linear dependencies and significant correlation of 
properties, the model is a so-called “black box”, i.e., a kind of 
closed system that receives data as input, “secretly” processes 
them and outputs the result. What is being done inside the 
“black box”, how the model has linked the input data with the 
result remains incomprehensible. 

To turn such a “black box” into a “white” one, i.e., to 
understand how individual parameters influence model 
prediction in regression and classification problems, the 
Treeinterpreter for decision trees, DeepLIFT, similar to Layer-
Wise Relevance Propagation and the most recent method LIME 
(Local Interpretable Model-agnostic) and SHAP (SHapley 
Additive exPlanations) can be applied. 

LIME is described in [31]–[33]. Application of the method is 
considered in [34], [35]. LIME assumes linear dependences of 
the classifier’s output in a local area. 

In turn, SHAP [36], [37] is qualitatively different from the 
simple search for correlations, in view of the fact that it uses the 
model for gaining knowledge about nonlinear and non-
monotonic interdependencies of parameters that influence the 
final result. SHAP is widely used to explain the result of 
machine learning [38]–[42]. 

SHAP in the form of the shap python library was used by us 
to assess the influence of the features of the logging data 
classifier model. 

V. RESULTS OF DATASET LABELLING 
To assess the impact of expert inconsistency, experiments on 

training and classification of test data were carried out using an 
expert identifier (ID) and without using an ID. 

At first, the classifier was applied to datasets with wells 
interpreted by only one expert (C or E). At the same time, on 
the first dataset the classification accuracy was quite high 
(accuracy 0.59, F1 0.55). The dataset was then merged into a 
single one that did not know which well had been interpreted 
by which expert. This resulted in a significant drop in 
classification quality (accuracy 0.44, F1 0.20). The use of the 
interpreter ID as a training parameter resulted in an improved 
quality of interpretation on this mixed data set (accuracy 0.50, 
F1 0.42) (Table IV).  

Based on our experimental results, we make the following 
suggestions: 

- the accuracy of lithotype identification (accuracy, 
precision and recall) significantly varies from expert to 
expert, and this fact should be taken seriously; 

- the input data from each individual expert provide a 
much better ANN output (accuracy of lithotype 
identification), when compared with a mixed dataset of 
boreholes (manual classification, multiple experts); 

- introduction of parameter ‘expert ID’ for ML training 
increases overall quality of classification, especially for 
recall values. 

To test our hypothesis that the experts agree well on the 
allocation of impermeable rocks, and that each interpreter 
introduces a large share of subjectivity in the separation of 
permeable rocks, we analysed the classifier’s work using SHAP 
in two cases: identifying all classes of rocks and identifying 
only impermeable rocks. 

The results are shown in Figs. 2 and 3. They demonstrate the 
importance of features in descending order. 

AR [x] and SP [x] here denote the values of recorded physical 
parameters of AR and SP within the boundaries of the floating 
window [−5; 5]. It can be seen that when identifying all classes 
of rocks, the most significant parameter is the interpreter ID, 
which reflects his subjective “style” and this must be taken into 
account when training the network. At the same time, when 
identifying only impermeable rocks, this parameter is not 
essential. 

TABLE IV  
RESULTS OF ANN APPLICATION TO ASSESSMENTS BY TWO EXPERTS 

 

 

Fig. 2. Comparative importance of parameters when identifying all classes of 
rocks. 

Methods Train Test Accuracy Precision Recall F1 

Expert С 45 12 0.5869 0.6491 0.4751 0.5486 

Expert E 35 5 0.4722 0.5409 0.1963 0.2880 

Experts C&E w/out ID 77 20 0.4401 0.4078 0.1365 0.2045 

Experts C&E with ID 77 20 0.4996 0.5157 0.3529 0.4190 
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Fig. 3. Comparative importance of parameters when identifying only 
impermeable rocks. 

VI. CONCLUSION 
Accurate interpretation of electric log data is vital for 

uranium production needs, specifically for selecting filter 
installation location when using the method of uranium 
extraction via sub-surface in-situ leaching of boreholes. Until 
now, such interpretation has been performed mostly manually.  

The use of automatic classifiers in this case promises great 
advantages. However, the preparation of the initial data and 
especially the training data set is not trivial for this task. The 
reason is that the machine learning algorithm can be trained 
almost exclusively on data interpreted by experts. In turn, 
expert classification can hardly be verified. It is intuitively clear 
that in this case the quality of automatic classification depends 
on how much the experts agree with each other. 

During the analysis of well interpretation carried out by three 
different experts, it was concluded that their estimates often did 
not agree with each other, and this was most relevant for the 
interpretation of all types of rocks. When only impermeable 
rocks are identified, the experts are much better aligned with 
each other. Labelling of data (introduction of the interpreter ID 
as a learning parameter) allowed improving the quality of 
classification (by 5 %) and recall (by 20 %). 

The use of SHAP on a mixed data set confirmed that when 
selecting eight rock classes, the most important parameter was 
the interpreter ID, while when selecting only two rock classes 
(permeable/impermeable) its role was insignificant. 
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