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Abstract: Rapid growth of the human population has led to various problems, such as massive overload of 
wastewater treatment plants. Therefore, optimal control of these plants is a relevant subject. This contribution 
analyses control of a cascade of ten biochemical reactors using simulation results with the aim to design optimal 
and predictive control strategies and to compare the achieved control performance. The plant represents a 
complicated process with many variables involved in the model structure, reduced to the single-input and 
single-output system. The first implemented approach is linear offset-free model predictive control which 
provides the optimal input trajectory minimising a quadratic cost function. The second control strategy is 
robust model predictive control with similar features as model predictive control but including the uncertainty 
of the process. The final approach is generalised predictive control, mostly used in the industry because of 
its simple structure and sufficiently good control performance. All considered predictive controllers provide 
satisfactory control performance and remove the steady-state control error despite the constrained control 
inputs.
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Introduction

The term biochemical reactor describes a process-
ing unit supporting a biologically active environ-
ment, which involves living organisms or biochemi-
cally active substances. If the environmental condi-
tions inside the biochemical reactor are optimal, 
microorganisms or cells are effectively fulfilling 
their function without producing impurities. The 
productivity and growth of microorganisms can 
be influenced by temperature and the concentra-
tion of dissolved gasses, pH value, and nutrients 
concentration. Therefore, process control of these 
variables represents an increasingly relevant part of 
the biotechnology industry (Henson, 2006). Feed-
back control systems are applied to achieve optimal 
growth and productivity and to minimise the pro-
duction costs. The application of process control 
strategies in biochemical reactors is an important 
research subject.
The most common industrial controllers are pro-
portional-integration-derivative (PID) controllers. 
Their simplicity and straightforward application 
granted them popularity mainly in the chemical 
and petrochemical industry. In Rajinikanth and 
Latha (2010), a PID control system was applied 
to control an unstable biochemical reactor. A PI 
controller with fractional order filter has been 
designed for a biochemical reactor in Vinopraba 
et al. (2013).

The increased availability of online sensors and 
analysers allowed implementing more advanced 
optimisation-based controllers to biochemical reac-
tors. An overview of optimal adaptive algorithms 
applied to chemical and biochemical reactors is 
presented in Smets et al. (2004). One of the most 
advantageous optimisation-based techniques is 
model predictive control (MPC). This approach 
has been applied in many areas including chemical 
engineering and food industry. In MPC, dynamic 
model of a plant is considered to predict its future 
behaviour. These algorithms can include constraints 
on process variables. The optimisation-based ap-
proach manages to minimise costs and maximise 
the quality and safety of the operation. Moreover, 
MPC is very efficient in multivariable control. In 
Ramaswamy et al. (2005), MPC was considered to 
control a biochemical reactor towards an unstable 
steady state tuning prediction horizon to increase 
control performance of the plant. Nonlinear model 
predictive control was used to control fed-batch bio-
chemical reactors in Craven et al. (2014) and Chang 
et al. (2016).
Throughout the years, multiple predictive control-
lers based on real-time optimal control have been 
developed. For instance, generalised predictive 
control (GPC) (Clarke et al., 1987), where the mathe-
matical model is a controlled auto-regressive and 
integrated moving-average (CARIMA) model. The 
objective of GPC is to compute a sequence of future 
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control signals to minimise a multistage cost func-
tion. The GPC method in adaptive and nonadaptive 
configuration was applied to a fed-batch penicillin 
production in Rodrigues et al. (2002), with the 
dissolved oxygen concentration as the controlled 
variable. The GPC in both, adaptive and nonadap-
tive, configurations improved control performance 
of the plant compared to the conventional PID and 
predictive Dynamic Matrix Control. In Akay et al. 
(2010), the temperature of a biochemical reactor 
with baker’s yeast production was controlled using 
the GPC approach. The control performance was 
analysed considering multiple positive and nega-
tive step changes of the set point.
The behaviour of biochemical reactors, both 
continuous and batch, is usually highly nonlinear. 
In some cases, the nonlinearity may cause process-
model mismatch leading to less effective MPC. To 
overcome this obstacle, robust MPC (RMPC) was 
implemented. There are many forms of RMPC: 
e.g., RMPC using linear matrix inequalities (LMIs) 
was introduced in Kothrare et al. (1996); Lucia and 
Engell (2013) designed a nonlinear RMPC for a 
batch biochemical reactor and improved its control 
performance. RMPC formulated using linear ma-
trix inequalities was designed for a continuously 
stirred tank reactor (CSTR) in Oravec and Bakošová 
(2012) and Oravec et al. (2017).
This paper presents the application of various pre-
dictive controllers for a cascade of ten biochemical 
reactors. The considered plant models wastewater 
treatment removing undesired compounds from wa-
ter. Optimal control of these devices is a relevant task 
as sustainability is nowadays one of the key require-
ments of industrial production. This research aims 
to compare control performance of conventional 
MPC, GPC and RMPC implemented to the cascade 
of ten biochemical reactors using simulations. The 

control performance was analysed considering vari-
ous criteria.

Plant Description

The carrousel plants represent an important part 
of the industrial wastewater treatment technology. 
Overall, these plants usually consist of several con-
tinuous stirred-tank reactors (CSTR) with a large 
volume. The disadvantage of this industrial unit is 
the presence of strong disturbances caused by the 
unstable feed flow rate and wastewater composition 
(Pons, 2011).
This research considers a cascade of ten aerated 
biochemical reactors for the carrousel activation 
shown in Fig. 1 (Derco et al., 1994; Trautenberger, 
2017). The given structure of the cascade provides 
both oxic and anoxic environments for the biomass. 
Moreover, each bioreactor involves a vertical fan 
(aerator) and a supply of airflow, to induce the 
required conditions for the biochemical processes 
within the cascade. The feed flow (wastewater) 
characterised by the concentration of the organic 
component (S) and impurities such as ammonium 
salts (NH) or nitrates/nitrites (NO) is fed into the 
first bioreactor of the cascade. The profile of the 
mixture composition inside the cascade of bioreac-
tors is the following:
— S0, NH0, NO0 (feed flow),
— S1, NH1, NO1 (output from the first bioreactor),
— S10, NH10, NO10 (output from the tenth bioreac-

tor).
A part of a mixture from the tenth bioreactor is 
returned to the first bioreactor as internal reflux 
and the rest of the mixture enters the final clarifier. 
The mixture in the final clarifier is separated by the 
sedimentation process to the effluent and sludge 
flow. The second (sludge) reflux is produced by the 

Fig. 1. Flow diagram of the carrousel plant involving the cascade of ten biochemical reactors 
and a final clarifier.
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sludge flow from the clarifier and the rest of the 
sludge leaves the plant as the waste.
Mass balance equations of the components of the 
mixture were used to design the mathematical 
model. These equations follow from the biochemi-
cal processes within the plant, such as carbonisation, 
nitrification, and denitrification. Furthermore, the 
mathematical model includes the Monod equation 
to consider the biomass growth. There are several 
assumptions of the designed mathematical model, 
such as:
— feed flow without the suspended or solid particles,
— oxygen does not constrain the processes of car-

bonisation or nitrification,
— reactors inside the cascade are perfectly mixed 

and variations in the temperature or pH are 
ignored.

Process identification
The purpose of process identification is to gain 
desired information about the process dynamics for 
further analysis (e.g., design of appropriate control-
lers). The most common structures of the identified 
models represent a state-space representation or a 
transfer function. In this case, the identified model 
represents the transfer function G(s) between:
— the concentration of ammonium salts from the 

tenth bioreactor (NH10, measured variable and 
controlled variable in the future),

— the ratio of the internal reflux to the feed flow 
rate (r, input variable and control input in the 
future),

in the form of Eq. (1). Since a robust approach was 
also considered, uncertain parameters were ex-
pressed using interval uncertainty within minimal 
and maximal values of each identified parameter.
The resulting transfer function has the following 
structure (Furka et al., 2020):

 
4 3 2
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4 3 2
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The numerator is a polynomial of the fourth order 
with the parameters b0—b4 and four zeros. The 
denominator structure is the same (fourth order 
polynomial with parameters a0—a4) and it involves 
four poles. The obtained nominal, minimal and 
maximal values of the transfer function parameters 
are stated in Tab. 1. The nominal model with nomi-
nal values of identified parameters was considered 

for the design of MPC and GPC. The robust MPC 
considered vertex systems are models generated 
for combinations of minimal and maximal values 
of uncertain parameters. All obtained vertex sys-
tems define a convex hull of all possible uncertain 
systems that represent possible behaviour of the 
cascade of biochemical reactors. The step response 
of the process model with nominal, minimal, and 
maximal parameters is depicted in Fig. 2.
To verify the obtained nominal model of the pro-
cess, it was compared with the original nonlinear 

Tab. 1. Nominal, maximal, and minimal values of identified model parameters.

Parameters b0 b1 b2 b3 b4 a0 a1 a2 a3 a4

Nominal 0.03 0.83 0.12 0.11 –56.10–3 0.94 16.77   9.94 5.72 1.00

Maximal 0.04 1.03 0.13 0.11 –54.10–3 1.29 23.06 12.28 6.39 1.00

Minimal 0.02 0.65 0.11 0.10 –52.10–3 0.63 11.24   7.74 5.05 1.00

Fig. 2. Step response of the process model with 
nominal (red solid line), minimal (black dotted 

line), and maximal (blue dashed line) parameters.

Fig. 3. Comparison of the step response of the 
nonlinear process (red dashed line) and the 
identified nominal model (blue solid line).
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process (Fig. 3). As it can be seen, the discrepancy 
(e.g. sum of squared residuals) between the trajec-
tories is negligible. Therefore, the nominal model 
describes the behaviour of the nonlinear plant suf-
ficiently.
The obtained nominal system can be discretised 
and transformed to the state-space representation. 
This form of the model structure is more accessible 
for the design of controllers. Considering the pro-
cess dynamics, sampling time Ts = 0.5 h is used for 
discretisation.

Predictive Control Methods

Model predictive control
The cascade of ten biochemical reactors represents 
a complex system with disturbances and uncertain-
ties. To control this system, linear offset-free MPC 
was designed and to ensure offset-free control of 
the plant, augmented model with constant output 
disturbances was considered (Meader at al., 2009). 
The augmented state-space model was considered 
as follows:

 0( 1) ( ) ( ), (0)x k Ax k Bu k x x+ = + =  (2)

 ( ) ( ) ( ),y k Cx k Fp k= +  (3)

where k ≥ 0 is a discrete time instant, x(k) Î Rnx re-
presents states, u(k) Î Rnu represents control inputs, 
y(k) Î Rny  stands for system outputs and p(k) Î Rnp 
stands for constant output disturbances. Parameter 
x0 represents the initial conditions of the system. 
Furthermore, the discrete state-space representation 
contains matrices A Î Rnx×nx, B Î Rnx×nu, C Î Rny×nx, 
F Î Rny×np representing state, input, output, and dis-
turbance matrices, respectively.
Based on optimisation, MPC evaluates a sequence of 
optimal control inputs at each sampling time. The 
evaluation considers future behaviour of the model 
and constraints of outputs, inputs, and states. After 
the evaluation of the sequence of optimal control 
inputs, MPC considers only the first computed 
control input to ensure its predictive properties. 
The optimisation problem is formulated in the fol-
lowing way:

 ( )
∆
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0

min ( ) ( ) ( ) ,
N

u k
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s.t. 0( 1) ( ) ( ), (0)x k Ax k Bu k x x+ = + =  (5)

 ( ) ( ) ( ),y k Cx k Fp k= +  (6)

 min max( ) ,u u k u£ £  (7)

 min max( ) ,x x k x£ £  (8)

 min max( ) ,y y k y£ £  (9)

Parameter N represents the prediction horizon, 
r(k) Î Rny is the reference, ∆u(k) = u(k) – u(k – 1) is 
the difference of control action. Variables Q and R 
are tuning matrices weighting control output and 
control input. The tuning matrices are positively 
definite and diagonal.

Robust model predictive control
The plant-model mismatch is treated in the RMPC 
design. The objective of RMPC design is to optimise 
the state-feedback control law to compute optimal 
control action. Unlike conventional MPC, RMPC 
minimises the “worst case” scenario in an infinite cost 
function horizon at each sampling time. The convex 
optimisation problem is formulated involving LMIs. 
In receding horizon setup, RMPC computes the 
sequence of optimal control actions over the predic-
tion horizon but implements only the first optimal 
control action. In order to remove steady-state track-
ing error, e(k), the vector of states was extended by an 
integral action in the following way:
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The extended uncertain state-space model is de-
fined as follows:

 0( 1) ( ) ( ), (0)x k Ax k Bu k x x+ = + = 

     (14)

 ( ) ( ),y k Cx k= 

  (15)

where A , B , C  are matrices of the system extended 
subject to integral action.
For the purpose of RMPC design, the controlled 
plant is represented by an uncertain discrete-time 
state-space model in the following form:

 0
ˆ ˆ( 1) ( ) ( ), (0)x k Ax k Bu k x x+ = + =   (10)

 ˆ ( ),y Cx k=   (11)
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where u represents the u-th vertex of the system and 
nu represents the total number of system vertices.
Input and output symmetric constraints are formu-
lated as Euclidean and peak norms (Kothrare et al., 
1996):
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where usat and ysat represent values of the sym-
metric constraints on control inputs and outputs, 
respectively. However, this approach tends to be 
conservative as it does not operate with the full 
range of feasible values of control inputs. To over-
come this obstacle, Huang et al. (2011) presented 
an improved RMPC design method considering 
the presence of actuator saturation and gain 
matrix of the state-feedback control law was evalu-
ated without constraints ( )( ) u x yn n nK k ´ +Î R  and with 
constraints ( )( ) u x yn n nF k ´ +ÎR  (Huang et al., 2011). 
The control input in the presence of actuator satu-
ration, us(k) is then computed using the following 
equation

 ( )( ) ( ) ( ),m m
s k k ku k E K k E F x k= + 

  (17)

where parameter ,u un nm
kE ´ÎR  {1, 2 }unm" Î ¼  

is the matrix of all combinations of constrained 
control inputs. Matrix ,u un nm

kE ´Î R  {1, 2 }unm" Î ¼  
represents the matrix of all combinations of uncon-
strained control inputs.

 .m m
k kE I E= -  (18)

The computation of ( )K k  and F(k) is transformed 
into the following LMIs

 ,, , , ,
min

k k k k k
k s ky X Y U Z

y yb+  (19)

s.t. 
( ) ( )

1/2
,

1/2
,

* * *
ˆ ˆ * *

0,
0 *

0 0

k

k k k

k s k

k s k

X

A X B Y X

Q X I

R Y I

u u

g
g

é ù
ê ú
ê ú+ê ú
ê ú
ê ú
ê ú
ê úë û

µ


 (20)

( )

( )

( ) ( )

1/2

1/2

* * *
ˆ ˆ * *

0,
0 *

0 0

k

m m
k k k k k k

k k

m m
k k k k k

X

A X B E Z E Y X

Q X I

R E Z E Y I

u u

g

g

é ù
ê ú
ê ú+ +ê ú
ê ú
ê ú
ê ú
ê ú+ê úë û

µ






 (21)

 
1 *

0,
( ) kx k X

é ù
ê ú
ê úë û

µ


 (22)

 
2
sat *

0,
T

k k

u I

Y X

é ù
ê ú
ê ú
ë û

µ  (23)

 { }2
, sat,

*
0, , 1, 2, , ,k

j j j uT
k k

U
U u j n

Y X

é ù
ê ú £ Î ¼ê úë û

µ  (24)

 ( )( ) ( ) 2
sat

*
0,ˆ ˆ ˆ

k

m m
k k k k k

X

C A X B E Z E Y y Iu u

é ù
ê ú
ê úé ù+ +ê úê úë ûë û

µ


 (25)

	 g k – gs,k > 0.  (26)

Minimisation of auxiliary weight parameter g k > 0 
ensures the minimisation of the weighted inverted 
Lyapunov matrix, Xk, defined as:

 Xk = gkP–1, P = PT µ 0. (27)

Matrix P represents the Lyapunov matrix. The opti-
mised parameter gs,k > 0 shows the weight on uncon-
strained control input. The weighting constant b > 0 
represents another degree of freedom in the MPC 
design. Parameters ( ) ( )x y x yn n n nQ + ´ +Î R  and u un nR ´ÎR  
are weighting matrices. Matrix Q  was extended sub-
ject to the extended state vector from Eq. (13).
Auxiliary matrix of the controller design without 
constraints, Zk is defined as follows:

 ,k kZ KX=   (28)

matrix Yk represents the auxiliary matrix of 
the constrained controller design. parameter 
Uk represents auxiliary matrix of inputs of 
robust MPC. Symbol * represents the symmetric 
structure of the matrix, I is the identity matrix of 
appropriate dimensions and 0 denotes zero matrix 
of appropriate dimensions.
unconstrained state-feedback controller gain is 
then computed as follows:

 1,k kK Z X -=  (29)

constrained state-feedback controller gain is then 
computed as follows:

 1.k kF Y X -=  (30)

The considered predictive algorithms (RMPC 
and MPC) require measurements of the states to 
compute optimal control input. However, the states 
of the biochemical reactor considered in this paper 
were not measurable, therefore the Luenberger 
state observer was introduced. Detail information 
on the state observer implementation can be found 
in Furka et al. (2020).

Generalised predictive control
The considered cascade of ten bioreactors is a SISO 
system and therefore GPC represents a suitable op-
tion for the control of such a plant. This form of 
the predictive controller is based on the controlled 
auto-regressive and integrated moving-average 
(CARIMA) model with the following structure:

 
( )

( ) ( ) ( ) ( ) ( ) ,
d k

z y k z u k T za b
D

= +  (31)

where a(z) and b(z) are polynomials representing 
the denominator and numerator of the discrete 
transfer function for the process:

 1
1( ) 1 ,n

nz z za a a- -= + + +  (32)

 1
1( ) ,m

mz z zb b b- -= + +  (33)

polynomial T(z) explains the behaviour of the dis-
turbances and d(k) is a random variable with zero 
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mean. The ratio between d(k) and D represents 
slowly varying disturbances.
The advantage of GPC control strategy using the 
CARIMA model is in unbiased prediction provided 
by incorporated estimation of disturbances as the 
previous equation can be transformed to the follow-
ing incremental form:

 ( ) ( ) ( ) ( ) ( ) ( ),z y k z u k T z d ka D b D= +  (34)

where Du(k) = u(k) – u(k – 1).
Subsequently, products in the previous equation 
can be modified as follows (Chen, 2013):

 1
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Prediction of the output can be derived from the 
left side of Eq. (35):

 

1

11

1 1

( ) ( ) ( )

( ) ( ),

n

i ii

n n

i ii i

y k y k i

u k i T d k i

a a

b D

+

-=

= =

+ - - =

= - + -

å
å å

 (36)

where an+1 = 0.
This control strategy determines control input 
minimising the following cost function:

[ ] [ ]ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),
T TJ r k y k Q r k y k u k R u kD D= - - +  (37)

where *ˆ ˆ( ) ( ) ( ),y k G u k y kD= +  variables Q and R are 
tuning matrices and G is a lower-triangular matrix 
(Clarke et al., 1987).
The output prediction assuming Du(k) = 0 is ex-
pressed by:

 [ ]1*( ) ( ) ( ) ( ) ,j jy k j H x k H y k Hx kF F L-+ = + -    (38)

where the structure of matrices HFj and HFj–1 is 
shown in (Chen, 2013).
The following structure of input increment can be 
derived by setting the gradient of Eq. (37) to zero 
(Grimble, 1992):
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 39)

where K is the gain of the controller.
The state-space representation is derived using 
observable canonical form realisation. The model 
structure has the following form:

 x(k + 1) = Fx(k) + GDu(k) + Ld(k), (40)

 y(k) = Hx(k) + d(k), (41)

matrices F, G, L and H are defined in (Chen, 2013).
The suitable state observer for the designed state-
space model (Eq. (40)) is written as:

 [ ]( 1) ( ) ( ) ( ) ( ) .x k x k u k y k Hx kF GD L+ = + + -    (42)

Results and Discussion

Control setup
The offset-free reference tracking problem was 
analysed considering a sequence of the step changes 
of the reference value. The closed-loop control was 
designed in the MATLAB/Simulink R2019a envi-
ronment using CPU i7 3.4 GHz and 8 GB RAM.
To formulate optimisation problems of MPC, 
YALMIP (Löfberg 2004), toolbox was introduced. 
The optimisation problem of MPC was solved by 
the GUROBI Optimization (2020). Weighting 
matrices Q and R and prediction horizon N were 
tuned as:

0.01 0 0 0

0 0.01 0 0
, 1, 30.

0 0 0.01 0

0 0 0 0.01

Q R N

é ù
ê ú
ê ú
ê ú= = =ê ú
ê ú
ê úê úë û

 (43)

The constraints on control input were set as follows: 
0 ≤ u(k) ≤ 60. Neither the control output, nor the 
states were constrained during the MPC design.
To formulate robust MPC, MUP toolbox was 
considered. Semidefinite programming problems 
(SDPs) were formulated using YALMIP (Löfberg, 
2004) and solved by MOSEK (MOSEK ApS., 2019). 
Variables Q  and R were systematically tuned as 
follows:
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The constraints on control input were set as fol-
lows: 0  ≤ u(k) ≤ 60. The control output was not 
constrained during the design of robust MPC.
When designing MPC and RMPC, the Luenberger 
state observer was considered to augment the state-
space from Eq. (2). The disturbance matrix was 
considered as follows:

 F = 1. (45)

The state-observer used observer gain designed 
using pole placement in the following way:

 

0.047
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The setup of prediction horizon N and weighting 
matrices (Q and R) of the GPC control strategy is 
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the same as in case of MPC (see Eq. (43)). Due to 
relatively long prediction horizon, it is impractical 
to display matrix G Î RN×N (see Eq. (39)) from the 
structure of the GPC controller. As it was mentioned 
before, matrices of the state-space observer (F, G, L 
and H) were designed according to Chen (2013).

Control performance
The designed predictive controllers were considered 
to control the plant described by the linear transfer 
function in Eq. (1). To compare the controllers, two 
reference step changes were generated, one positive 
and one negative. The controlled output is depicted 
in Fig. 4a) and Fig 5a). The corresponding control 
input is depicted in Fig. 4b) and Fig 5b). All predic-
tive controllers were compared by simulation using 
the nominal model of the biochemical reactor. To 

ensure the consistency of the results, similar values 
of weighting matrices were considered in all predic-
tive methods. The performance of designed control 
strategies was also compared by integral absolute 
error (IAE) and integral squared error (ISE). These 
criteria have the following structures:

 
150 150 2

0 0
IAE ( ) , IAE ( ) ,

k k
e k e k

= =
= =å å  (47)

where e(k) is the control error. The resulting values 
of IAE and ISE criteria are listed in Tab. 2. The ob-
tained values confirm better control performance 
of MPC, and GPC compared to RMPC.
The resulting trajectories show that all the designed 
controllers removed the steady-state control error, 
and each controlled system reached the reference 
value without offset. Moreover, MPC and RMPC 

 a) Control input to the process b) Output from the process

Fig. 4. Comparison of the control performance provided by positive reference step change. MPC (□), 
RMPC (●), GPC (*), reference (dashed black) line.

 a) Control input to the process b) Output from the process

Fig. 5. Comparison of the control performance provided by negative reference step change. MPC (□), 
RMPC (●), GPC (*), reference (dashed black) line.
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satisfied the constraints on the control input. The 
GPC did not consider constraints on the control 
input during the design.
According to the results, MPC and GPC achieved 
almost the same control performance. This is 
mainly caused by the assumption that the controlled 
process is a single-input-single-output system.
Variations of the feed flow rate represent external 
disturbance. In the simulation results, variations of 
the feed flow were considered to be minor and oc-
casional and compensated by a well-tuned controller. 
If the disturbance is significant, it could be measured 
to design a control loop with disturbance rejection. 
Moreover, significant variations of the feed flow rate 
can still be reduced by storing the feed in additional 
tank before it enters the carrousel plant.
The output variable of the process (Fig. 4b and 5b) 
was stabilized faster than the input variable (Fig. 4a 
and 5a). The reason is the presence of a stable zero 
in the transfer function of the studied process. All 
designed controllers try to compensate the effect 
of this zero and therefore the input variable is 
still varying while the output variable is already in 
steady state.
There are also slight differences between the input 
trajectory of RMPC and of other controllers. This 
is reflected in the increased settling time and both 
IAE and ISE criteria. This is an expected result be-
cause unlike other controllers, the design of RMPC 
includes an uncertain model of the plant. If the 
case study considered control of a nonlinear model, 
RMPC would be expected to outperform both MPC 
and GPC, as the process model mismatch would be 
significant.

Conclusion

In this paper, the design and application of 
multiple predictive controllers were investigated. 
The controllers were applied for a cascade of ten 
biochemical reactors using simulations. First, 
conventional MPC and GPC were designed for a 
nominal model of the plant. RMPC was designed, 
considering an uncertain model of the plant. To 
design the RMPC, LMI-based approach with re-
duced conservativeness was applied. The control 

performance of the designed controllers was 
compared using integral criteria. As expected, the 
conventional MPC and GPC control performance 
was almost identical. Application of the RMPC 
decreased the control performance; however, this 
approach is able to handle uncertain and non-
linear behaviour of the plant.
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