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Abstract 
 

A recently published paper [Martin (2017) JoSS 18(1):1-21] investigates the structure of an 

unusual set of social networks, those of the alternate personalities described by a patient 

undergoing therapy for multiple personality disorder (now known as dissociative identity 

disorder). The structure of these networks is modeled using the 𝑑𝑘-series, a sequence of nested 

network distributions of increasing complexity. Martin finds that the first of these networks 

contains a striking feature of a large “hollow ring”; a cycle with no shortcuts, so that the shortest 

path between any two nodes in the cycle is along the cycle (in more precise graph theory terms, 

this is a geodesic cycle). However, the subsequent networks have much smaller largest cycles, 

smaller than those expected by the models. In this work, I re-analyze these delusional social 

networks using exponential random graph models (ERGMs) and investigate the distribution of the 

lengths of geodesic cycles. I also conduct similar investigations for some other social networks, 

both fictional and empirical, and show that the geodesic cycle length distribution is a macro-level 

structure that can arise naturally from the micro-level processes modeled by the ERGM. 

 

Keywords: Geodesic cycle, Exponential random graph model, ERGM, 𝑑𝑘-series random graphs, 

Social networks, Fictional networks, Dissociative identity disorder 

__________ 

* Università della Svizzera italiana, Lugano, Switzerland, alexander.stivala@usi.ch



36 

 

Introduction 

In order to investigate the structure of ideas, or schemata, of social networks, Martin (2017) 

investigated a very unusual set of three social networks. These are delusional social networks of 

alternative personalities described by a patient undergoing therapy for multiple personality 

disorder (David et al. 1996), now known as dissociative identity disorder (Kihlstrom 2005). In 

order to do this, Martin (2017) uses random graphs, specifically the 𝑑𝑘-series model (Mahadevan 

et al. 2006; Orsini et al. 2015), to generate random networks that fit different aspects of these 

delusional social networks, and then compares other (not explicitly fit by the model) structures of 

the random networks with those of the observed networks. 

Martin (2017) finds that one of the networks contains what he describes as a large “hollow ring” 

– a cycle with no shortcuts so that the shortest path is along the cycle. In this network, the size of 

this largest hollow ring is much larger than expected under the 𝑑𝑘-series model. However in the 

other two networks, the size of the largest such hollow ring is smaller than expected under the 

model. 

 

He concludes that the logic of these networks is spatial, with long path lengths indicating a “large 

world”, and that the bias against large hollow rings is indicative of a belief that a chain of 

relationships that “goes away” in space is not going to return. In summary, Martin (2017) 

concludes with the hypothesis that the root schema for social networks is local and spatial.  

 

In this work, I will re-examine these networks using a different random graph model, the 

exponential random graph model (ERGM), which allows some more flexibility in the structures it 

can model, and also allows use of additional data (such as nodal covariates) not available in the 

purely structural 𝑑𝑘-series model. In addition, I will make precise the “hollow ring” definition and 

put it in the context of mathematics and computer science research in graph theory, where it is 

known as a geodesic cycle. Similarly to Martin (2017), I will use random graph models (both 

ERGM and 𝑑𝑘-series) to generate random networks. However rather than examining the size of 

just the largest geodesic cycle, I will compare the distribution of geodesic cycle lengths in the 

observed network to that in the generated networks. 

In addition, I will repeat this exercise with several other empirical networks (human and animal 

social networks), and a fictional character network, and compare the results with those for the 

delusional social networks. 

Cycles, chordless cycles, and geodesic cycles 

Martin (2017) describes a “hollow ring” of degree ten as “a cycle containing ten nodes, no pair 

of which have a distance in the graph lower than that in the cycle”, so that there are no “short 

cuts” between nodes in the ring Martin (2017:16). This definition makes intuitive sense, and 

seems precise enough for us to understand it unambiguously (and for Martin (2017) to count 

such structures), however, I believe it is useful to relate it to existing definitions in graph theory 

literature, in which this idea has already been defined precisely. 



37 

 

First, I prefer the term “cycle” rather than “ring”, as the former is well-known in graph theory, 

while “ring” is generally not used in graph theory, being better-known as an algebraic structure. 

In the following definitions, all graphs are undirected, and all graphs considered in this work are 

undirected. 

A walk is a sequence of edges joining a sequence of vertices; a trail is a walk in which the edges 

are distinct; a circuit is a non-empty trail in which the first and last vertices are repeated. Then a 

cycle (or simple circuit) is a circuit where only the first and last vertices are repeated. A 

Hamiltonian cycle is a cycle that visits each node exactly once. 

An induced subgraph of a graph is a subgraph formed by a subset of vertices of the graph and all 

the edges connecting vertices in that subset. An induced path in a graph 𝐺 is a path that is an 

induced subgraph of 𝐺. That is, any two adjacent vertices in the path are connected by an edge in 

𝐺 and any two non-adjacent vertices in the path are not connected by an edge in 𝐺. 

A chord is an edge joining two non-adjacent nodes in a cycle. A chordless cycle is a cycle in which 

no two vertices of the cycle are connected by an edge that is not itself in the cycle; i.e. it is a cycle 

with no chords. A chordless cycle is also known as an induced cycle, as (just as for an induced 

path) in a chordless cycle in a graph 𝐺, any two adjacent vertices in the cycle are connected by an 

edge in 𝐺 and any two non-adjacent vertices in the cycle are not connected by an edge in 𝐺. A 

chordless cycle is sometimes also called a hole. 

The preceding definitions are all standard and well-known in graph theory, and can be found in 

any discrete mathematics or computer science textbook, e.g. Roman (1989), or Wolfram 

MathWorld, e.g. Weisstein (2020). The following definitions, however, are not so well-known. 

A geodesic cycle (Li and Shi 2018) or isometric cycle (Lokshtanov 2009) is a cycle where the 

length of the shortest path between any pair of vertices along the cycle is equal to the length of the 

shortest path between them in the graph: 

𝑑𝐺(𝑢, 𝑣) = 𝑑𝐶(𝑢, 𝑣), 

where 𝑑𝐺(𝑢, 𝑣) is the distance (length of shortest path, i.e. geodesic) between 𝑢 and 𝑣 in 𝐺. This 

is not such a well-known (textbook) concept, but this definition of “geodesic cycle” goes back to 

at least Negami and Xu (1986). Every geodesic cycle is chordless, but not every chordless cycle 

is geodesic. 

Note that although finding the largest cycle and largest chordless cycle in a graph are both 𝒩𝒫-

complete problems (Garey and Johnson 1979), finding the largest geodesic (isometric) cycle is in 

𝒫 (Lokshtanov 2009). In simple terms, this means that finding the largest cycle or largest chordless 

cycle is a computationally intractable problem1 (it is in the same class as the famous “traveling  

                                                

1 Unless 𝒫 = 𝒩𝒫. 
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salesman problem”), but that finding the largest geodesic cycle is not. This means that not only are 

geodesic cycles a fairly intuitive idea, perhaps because of our spatial ideas of (social) networks 

(the idea of the “shortcut” being inherently spatial), but it is also computationally convenient to 

use them rather than cycles or chordless cycles. 

To illustrate these definitions, consider the graph shown in Figure 1. This graph has seven cycles. 

Four of them are chordless (1–4–5–9–3–2–1, 4–6–5–4, 5–6–7–8–9–5, and 1–4–6–7–8–9–3–2–1), 

however only three of the chordless cycles are geodesic: the largest chordless cycle is not geodesic 

as the paths 4–5–9 and 6–5–9 are “shortcuts” across the cycle. 

A cycle 𝐶 of a graph 𝐺 is (geodetically) convex if for any pair of distinct vertices 𝑢, 𝑣 ∈ 𝑉(𝐶) 
(where 𝑉(𝐺) denotes the vertex set of a graph 𝐺): 

𝑑𝐶(𝑢, 𝑣) < 𝑑𝐺−𝐶(𝑢, 𝑣), 
 

i.e., the distance along the cycle between any pair of vertices in the cycle is less than the distance 

between them in the graph excluding the cycle. This is not such a well-known concept, but is 

described in Hellmuth, Leydold, and Stadler (2014). Geodetic (or geodesic) convexity in graphs 

(more generally, not necessarily of cycles) had earlier been discussed in Batten (1983), Farber and 

Jamison (1986), Farber (1987). Note that these papers on “isometric”, “geodesic”, or “convex” 

cycles do not cite each other or mention any equivalent definitions with different names, although 

Hellmuth et al. (2014) also discusses isometric subgraphs and isometric cycles: 

 A subgraph 𝐻 of 𝐺 is isometric if 𝑑𝐻(𝑢, 𝑣) = 𝑑𝐺(𝑢, 𝑣) holds for all 𝑢, 𝑣 ∈ 𝑉(𝐻). 
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 𝐻 is a (geodetically) convex subgraph of 𝐺 if and only if for all 𝑢, 𝑣 ∈ 𝑉(𝐻), all shortest 

𝑢𝑣-paths 𝑃 ∈ ℙ𝐺[𝑢, 𝑣] are contained in 𝐻. 

 Convex implies isometric (Hellmuth et al. 2014:125). 
 

An atomic cycle is defined by Gashler and Martinez (2012) as a generalization of a chordless cycle: 

 

 An 𝑛-chord is a path of length 𝑛 connecting two vertices in a cycle, where 𝑛 is less than 

the length of the shortest path in the cycle between the vertices. 

 An atomic cycle is a cycle with no 𝑛-chords. 

 

We can see that this coincides with the definition of a geodesic cycle, and also with the description 

of a “hollow ring” by Martin (2017). I prefer the term “geodesic cycle” as it makes sense 

mathematically given its definition, without confusing it with other properties such as atomicity, 

and it dates back at least as far as Negami and Xu (1986). 

Counting cycles 

For an Erdős–Rényi random graph, the expected number of cycles of a given length can be 

calculated (Erdős and Rényi 1960; Takács 1988), as can the probability of a chordless cycle 

(Łuczak 1991), and the expected length of the largest chordless cycle (Łuczak 1993). Geodesic 

cycles in random graphs were studied in Benjamini et al. (2011), and the length of the longest 

geodesic cycles in random graphs in Li and Shi (2018). 

For more complex families of random graphs, such as the 𝑑𝑘-series or ERGMs, however, cycle 

length distributions can only be estimated from simulations. In this work, geodesic cycles are 

counted using the find_large_atomic_cycle algorithm of Gashler and Martinez (2012). 

Exponential random graph models and 𝒅𝒌-series random 

graphs 

ERGMs provide a way of modeling network ties based on structure and attributes. Given an 

observed network, we estimate parameters for local effects, such as closure (clustering), activity 

(greater tendency to have ties), homophily, and so on. The sign (positive for the effect occurring 

more than by chance, negative for less than by chance) and significance tell us about these 

processes, taking dependency into account. That is, the parameter tells us about the process 

occurring significantly more or less than by chance, given all the other effects in the model 

occurring simultaneously. ERGMs are widely used in the social sciences to model social networks 

(Robins et al. 2007a; Lusher, Koskinen, and Robins 2013; Amati, Lomi, and Mira 2018). 

An ERGM is a probability distribution with the form: 

 

Pr(𝑋 = 𝑥) =
1

𝜅
exp(∑ 𝜃𝐴𝐴 𝑧𝐴(𝑥)), 
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where 𝑋 = [𝑋𝑖𝑗] is a 0-1 matrix of random tie variables; 𝑥 is a realization of 𝑋; 𝐴 is a 

“configuration”, or motif, a (small) set of nodes and a subset of ties between them; 𝑧𝐴(𝑥) is the 

network statistic for configuration 𝐴; 𝜃𝐴 is a model parameter corresponding to configuration 𝐴; 

and 𝜅 is a normalizing constant to ensure a proper distribution. 

 

Which configurations 𝐴 are allowed depends on the assumptions as to which ties are independent. 

Here, I will use the social circuit dependence assumption (Snijders et al. 2006; Robins et al. 

2007b), under which two potential ties are conditionally dependent exactly when, if they were 

observed, they would form a four-cycle in the network (Robins et al. 2007b). 

 

So given the observed network 𝑥, the problem is to estimate the parameter vector 𝜃 which 

maximizes the probability of 𝑥 under the model. A variety of algorithms, generally based on 

Markov chain Monte Carlo (MCMC) techniques, have been used to do this (Corander, 

Dahmström, and Dahmström 1998, 2002; Snijders 2002; Hunter and Handcock 2006; Robins et 

al. 2007b; Caimo and Friel 2011; Hummel, Hunter, and Handcock 2012; Hunter, Krivitsky, and 

Schweinberger 2012; Byshkin et al. 2016; Amati et al. 2018; Byshkin et al. 2018; Borisenko, 

Byshkin, and Lomi 2020), and are implemented in different software packages (Handcock et al. 

2008; Hunter et al. 2008; Wang, Robins, and Pattison 2009; Handcock et al. 2016a,b; Stivala, 

Robins, and Lomi 2020). 

 

Rather than estimating model parameters to fit an observed network and then, if an ensemble of 

random networks is required, simulating random networks from the model as required by ERGM, 

𝑑𝑘-random graphs are simulated so that particular statistics of the observed network are fixed. 

Therefore, no parameter estimation is required to obtain the appropriate simulated networks. The 

𝑑𝑘-series defines a sequence of nested network distributions of increasing complexity, labelled by 

the value of 𝑑. Specifically, first, the density is fit (𝑑 = 0), then degree distribution (𝑑 = 1), degree 

homophily (𝑑 = 2), average local clustering (𝑑 = 2.1), and clustering by degree (𝑑 = 2.5) (Orsini 

et al. 2015). As noted by Orsini et al. (2015), the 𝑑 ∈ {0,1,2} distributions are well-known random 

graph models, and in particular, the 0𝑘 random graph distribution is just the Erdős–Rényi random 

graph model. However, the 2.1𝑘 and 2.5𝑘 random graphs are introduced to model clustering, as 

an important and ubiquitous feature of many empirical networks (Orsini et al. 2015). 

 

Martin (2017) mentions that a difficulty with ERGMs, along with other techniques such as block 

modeling (White, Boorman, and Breiger 1976), is that they require strong structural assumptions. 

He further notes that, for more flexible modeling approaches, the difficulty in obtaining a 

converged model for theoretically interesting effects means that model convergence itself becomes 

the criterion for the model selected Martin (2017:6). For these reasons, Martin (2017) instead uses 

the 𝑑𝑘-series. 

 

I contend, however, that rather than necessarily being a difficulty, the strong structural assumptions 

made by the use of ERGM is in some ways an advantage. The social circuit dependence 

assumption means that statistical significance of parameters tells us something about the 

corresponding local processes generating the observed global structure of the network. The 

configurations (and their corresponding parameters) in the model can therefore chosen not purely 

to fit local structure (such as degree homophily and local clustering) but to test theoretically 

relevant hypotheses about local processes. 
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A potential disadvantage of the 𝑑𝑘-series model is that it is purely structural, unlike ERGMs, 

which can incorporate node (and other) attributes. As noted by Martin (2017:6) if extra information 

such as nodal covariates is unavailable or unimportant, this is no disadvantage at all. However in 

cases where such information is available, it is potentially problematic. Martin (2017) does not 

consider node attributes in the “Patricia” data, finding little evidence of structural implications 

Martin (2017:8). I will show that this is largely true, although ERGM models that incorporate node 

attributes do have a better fit than those that do not. However for some of the other social networks 

I consider, it is vital to incorporate node attributes to obtain a reasonable model. 

 

As for the potential difficulty in obtaining a converged ERGM model due to problems with 

degeneracy, for example, it is true that this can be a challenging task. However advances in model 

specifications such as the use of the “alternating” or “geometrically weighted” model terms 

(Hunter and Handcock 2006; Snijders et al. 2006; Robins et al. 2007b), curved ERGMs (Hunter 

and Handcock 2006; Hunter 2007), and alternative estimation algorithms (Hummel et al. 2012; 

Byshkin et al. 2018) mean these degeneracy problems can generally be overcome (Schweinberger 

et al. 2019). 

 

Data 
 

As described in David et al. (1996) and used in Martin (2017), the patient “Patricia” drew maps in 

which she represented her personalities as nodes and relationships between them as edges. I 

manually coded the networks from Patricia’s hand drawings as reproduced in David et al. (1996). 

Three such drawings are available, for the years 1990, 1992, and 1993. Network visualizations of 

these three delusional social networks are shown in Figures 2, 3, and 4, respectively. 

 

The 1990 network has no nodal attributes other than names. However, the 1992 and 1993 networks 

have some nodal attributes. In the original drawings, shaded nodes are labeled as “Integrated 

alters” and I coded these as a binary attribute Integrated. “Christian alters” are marked with an 

asterisk in the original drawings, and I coded these as a binary attribute Christian. Some nodes are 

annotated with a number (which may correspond to age, although this is not clear) and these are 

coded as a numeric attribute (or NA if missing). Some nodes are included in a region labeled the 

“Sphere of the blue flame” and I coded this with a binary attribute Sphere. In the 1993 network, 

there is in addition a graph component labeled “Behind” on the drawing, and I coded this as a 

binary attribute Behind. 

 

Martin (2017) includes a detailed discussion of the structure and evolution of these networks, 

however due to their unusual nature, some more discussion of what they might mean is warranted. 

According to David et al. (1996:139–140): 

 

It would be hard to conceive of a single mind capable of sustaining dozens of other 

minds, lives, and relationships, leaving aside the question of whether or not such a feat 

is intended. 

 

and David et al. (1996:143): 
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The illusion of unity of consciousness is not exposed in MPD [multiple personality 

disorder] but is repeated over and over again. One illusory consciousness gives way (or 

joins) another. Each is a coherent autonomous homonculus [sic]. It is like an illiterate 

forger passing off dud bank notes of different denominations, but always with the word 

“pound” mis-spelled.  

 

Without referring to Freud, David et al. (1996) refers to MPD as “a means of dealing with social 

and interpersonal conflict” that “becomes fossilised and embellished...” David et al. (1996:143). 

Freud (1950:211–212), famously, had the view, that, in relation to paranoia: 

 

In every instance the delusional idea is maintained with the same energy with which 

another, intolerably distressing, idea is fended off from the ego. Thus they love their 

delusions as they love themselves. That is the secret. 

 

These theories of how such delusions may arise, however, give us no insight into what the lines in 

Patricia’s diagrams (network edges) might represent. According to Martin (2017:5): 

 

In many ways, this returns us to core intuitions of early network analysts: that we are 

interested in some sort of intertwining of lives, but we might be unable to specify a single 

content to the nature of the ties involved. ... Patricia’s maps presumably are indicating a 

more fundamental connection, one perhaps as obscure as our own strong feelings. 

 

However, is not “a single mind capable of sustaining dozens of other minds, lives, and 

relationships” David et al. (1996:139–140) just (part of) what a novelist, or screenwriter, or any 
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other fiction writer must have, to some degree? The characters (“coherent autonomous 

homunculi”) in a work of fiction are individual and coherent, but they perhaps have a common 

hallmark, from the author, so, leaving aside any consideration as to how “real” the alter are, it 

makes sense to consider Patricia’s alters just as we might consider fictional characters. They and 

their relationships are not completely arbitrary or random, but follow some schema which makes 

them meaningful. 

 

In addition to the delusional social networks, I also use six other networks from a variety of 

domains. 

 

The first is a fictional character network. The Grey’s Anatomy network (Lind 2012; Leavitt and 

Clark 2014; Weissman 2019) is a sexual contact network of characters on the ABC television 

medical drama “Grey’s Anatomy”. There are nodal covariates for sex, birth year, race, and position 

in the hospital. This network is illustrated in Figure A1. ERGM models are also based on those 

described in Lind (2012), Leavitt and Clark (2014). 

 

The Dolphins social network (Lusseau et al. 2003), downloaded from http://www-

personal.umich.edu/~mejn/netdata/ (accessed January 2, 2018), is a social network of a small 

closed population of bottlenose dolphins, with ties representing significantly more frequent co-

occurrence of individuals within schools (Lusseau et al. 2003). This network is illustrated in Figure 

A2. 

 

The Lazega law firm (Lazega and Pattison 1999; Lazega 2001; Snijders et al. 2006) network 

downloaded from http://moreno.ss.uci.edu/data.html (accessed November 2, 2017) is a friendship 

network of lawyers in a New England law firm. There are nodal covariates for gender, law school, 

office, practice, status, age, and seniority. This network is illustrated in Figure A3. 

 

The Zachary karate club network (Zachary 1977), obtained via statnet (Handcock et al. 2008; 

Hunter et al. 2008; Handcock et al. 2016a,b), is the well-known network of social relationships 

among members of a karate club. This network is illustrated in Figure A4. 

 

The Kapferer tailor shop (Kapferer 1972) network, obtained via statnet, is a network of social 

interactions between workers in a tailor shop in Zambia. This network is illustrated in Figure A5. 

ERGM models are replications of those in Hummel et al. (2012). 

 

The High school friendship network (Mastrandrea, Fournet, and Barrat 2015) downloaded from 

the SocioPatterns website (http://www.sociopatterns.org/datasets/high-school-contact-and-

friendship-networks/, accessed September 25, 2019) is a network of reported friendships among 

students at a high school in France. The directed network of reported friendship is treated as 

undirected here (reciprocity in the directed network was 0.78). There are nodal covariates for age 

and school class. This network is illustrated in Figure A6. 

 

Summary statistics of all the networks considered are shown in Table 1. 

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://moreno.ss.uci.edu/data.html
http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
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Methods 
 

For each of the networks considered, ERGM models are estimated using the statnet software 

(Handcock et al. 2008; Hunter et al. 2008; Handcock et al. 2016a,b). Unless otherwise noted, the 

default MCMCMLE (Markov chain Monte Carlo maximum likelihood estimation) estimation 

method is used; sometimes the “Stepping” algorithm (Hummel et al. 2012) is used instead. Where 

a curved ERGM is used, this is noted by the estimation of the corresponding decay parameter 𝛼 in 

the model, otherwise the fixed value of 𝛼 is specified. The ERGM parameters used are shown in 

Table 2. 

 

Only models that show acceptable convergence and goodness-of-fit according to statnet 

diagnostics are included in the results. For each network, the “best” model, according to AIC, BIC, 

and goodness-of-fit plots was selected, and 100 networks simulated from that model using statnet. 

 

Random graphs from the 𝑑𝑘-series distributions are generated with the RandNetGen software 

(Mahadevan et al. 2006; Colomer-de Siḿon et al. 2013; Colomer-de Siḿon and Boguñá 2014; 

Orsini et al. 2015). In total, 100 networks from each of the 𝑑𝑘-series distributions 𝑑 = 1, 𝑑 = 2, 

𝑑 = 2.1 and 𝑑 = 2.5 are simulated using RandNetGen to do the appropriate 𝑑𝑘-randomization for 

each empirical network. 

 

The geodesic cycle length distributions are then computed from these simulated networks, using 

the find_large_atomic_cycle algorithm (Gashler and Martinez 2012) as implemented in the 

Waffles machine learning toolkit (Gashler 2011) (software was written to call this toolkit routine 

in order to find geodesic cycles of all possible lengths). Cycle and chordless cycle distributions 

from the simulated networks are computed using the CYPATH program (Uno and Satoh 2014). 

Box plots were generated using the ggplot2 R package (Wickham 2009) and follow the default 

convention that the lower and upper hinges show the first and third quartiles, with the whiskers 

extending to the largest or smallest value no further than 1.5 times the interquartile range from the 

corresponding hinge. 
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Code and scripts written for this work are available from 

https://sites.google.com/site/alexdstivala/home/geodesic_cycles. 

Results 

Models of the delusional social networks 

Table 2 shows ERGM models for Patricia’s 1990 network. As is apparent from Figure 2 and 

discussed in Martin (2017), this network hardly resembles a typical social network at all, having 

only nodes of degree two or three, a large geodesic cycle (“hollow ring”) of length 10, and in fact 

resembles a connected caveman graph (Watts 1999). There is therefore little to be gained by 

attempting to interpret these model parameters, except to note that we can indeed obtain converged 

ERGM models which fit this network adequately, and that Model 3 indicates an over-

representation of nodes of degree 3. 

 
 

https://sites.google.com/site/alexdstivala/home/geodesic_cycles
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Table 3 shows ERGM models of Patricia’s 1992 network. As is clear from Figure 3, and discussed 

in Martin (2017), this network is far larger and very different from the 1990 network, and contains 

node attributes. We can conclude from these models that there is a significant tendency against 

preferential attachment on degree (the GWDEGREE parameter is positive and significant). This 

is not what we might have expected from the 𝑑𝑘-series models as discussed in Martin (2017) where 

this network is described as having degree heterophily or a hub-spoke structure Martin (2017:12). 

The positive and significant GWESP parameter indicates a significant tendency for clustering 

(transitive closure). This is a very typical result in social networks, and also a feature noted in this 

network by Martin (2017:16). 

 

Models 2 and 3 incorporate nodal attributes as well as structural information, which is not possible 

with the 𝑑𝑘-series models used by Martin (2017). There appears to be no significant effect of the 

“Christian” and “Integrated” attributes, consistent with Martin (2017:8) finding little evidence of 

structural implications. However, Model 3 shows that nodes in the “Sphere of the Blue Flame” are 

both more likely to form ties than other nodes, and in addition to that, are more likely to form ties 

to other nodes within the Sphere than to nodes outside it. This, of course, is entirely consistent 

with the Sphere resembling a network community (see Figure A7), and with the spatial and planar 

nature of the network noted by Martin (2017). 

 

Table 4 shows ERGM models for Patricia’s 1993 network (Figure 4). As discussed in Martin 

(2017), this network is not very different from the 1992 network, and this is reflected in the 

ERGM models. One difference, however, is that the Christian and Integrated attributes, which 

had no statistically significant effects in the models for 1992 network (Table 3), now both have 

positive significant effects for activity and homophily.  

 

ERGM models of the other networks are shown in Appendix B. 
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Geodesic cycle length distributions 

Figures 5–7 show the distribution of geodesic cycle lengths and of the largest geodesic cycle length 

for Patricia’s 1990, 1992, and 1993 networks, respectively. In agreement with the results described 

by Martin (2017) using the 𝑑𝑘-series models, we find that the geodesic cycle of length 10 in the 

1990 network is extremely unlikely under the ERGM model (under which a much shorter longest 

geodesic cycle is expected), while the fact that the largest geodesic cycle for the 1992 network is 

only of length 4 is extremely unlikely (larger maximum geodesic cycle lengths are expected). The 

situation for the 1993 network is not as clear, with the largest geodesic cycle (of length 8) being 

on the lower hinge of the boxplot for both the 𝑑𝑘-series 2.5𝑘 distribution and the ERGM (Figure 

7). Further, the distribution of geodesic cycle lengths is not a very good fit in the 1990 and 1992 

networks (Figures 5 and 6), although for the 1993 networks (Figure 7) it is acceptable in the case 

of the ERGM. 

For the 1990 and 1992 networks, the ERGM does not fit the maximum geodesic cycle length or 

geodesic cycle distribution any better (or worse) than the 𝑑𝑘-series 2.5𝑘 distribution, despite the 

ERGM making use of nodal attributes for the 1992 network, which the 𝑑𝑘-series cannot. However 

for the 1993 network, the ERGM has a better fit to the geodesic cycle length distribution than the 

𝑑𝑘-series 2.5𝑘 distribution (Figure 7). Note that all four ERGM models fit the maximum geodesic 

cycle length as well or better than the 𝑑𝑘-series 2.5𝑘 distribution, including ERGM Model 1, 

which does not include any nodal attributes and has only three estimated parameters (Table 4). 

Figure 8 shows the geodesic cycle length distributions for the 𝑑𝑘-series 1𝑘 distribution (which 

shows the best fit to maximum geodesic cycle length in Figure 7) and for ERGM Model 1. The 

ERGM shows a better fit to the geodesic cycle length distribution in this network than any of the 

𝑑𝑘-series distributions, even when node attribute information is not included in the model. 
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Figures 9–14 show the corresponding results for the other networks. Unlike Patricia’s networks, 

in all of these networks the ERGM shows a good fit to the largest geodesic cycle sizes in the 

observed networks, and the fit to the overall geodesic cycle length distributions is also all 

acceptable for all of these networks. 

 

With two exceptions, the 𝑑𝑘-series 2.5𝑘 distribution shows a similarly good fit to the largest 

geodesic cycle sizes and geodesic cycle length distributions. The exceptions are the Grey’s 

Anatomy network and the high school friendship network. In the Grey’s Anatomy network (Figure 

9), although both 𝑑𝑘-series 2.5𝑘 and ERGM fit the maximum geodesic cycle length, the ERGM 

also fits the geodesic cycle distribution well, while the 𝑑𝑘-series distribution does not. Specifically, 

the observed network has significantly more four-cycles, and fewer five-cycles, than expected 

under 𝑑𝑘-series 2.5𝑘 distribution. (The importance of four-cycles in sexual contact networks is 

further discussed in the Conclusions). That the ERGM is able to fit cycle length distributions on 

this network while the 𝑑𝑘-series cannot is due to the ERGM being able to make use of the node 

attribute information the sex of actors. Most of the relationships in the network are heterosexual, 

and as a consequence there are no odd-numbered cycles in the network: the ERGM can model this 

using the sex of the actors while the 𝑑𝑘-series cannot. 

 

In the high school friendship network (Figure 14), the ERGM fits the maximum geodesic cycle 

length better than the 𝑑𝑘-series 2.5𝑘 distribution does. Again, this could be a consequence of the 

ERGM making use of node attribute information, while the 𝑑𝑘-series cannot. Note that we 

cannot test this directly on this network by fitting an ERGM without using node attributes, as 

such models do not converge: a parameter for homophily on class needs to be included in the 

model to fit the community structure induced by the school classes. 
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Conclusions and further work 

Neither ERGM nor 𝑑𝑘-series models (up to 2.5𝑘) of Patricia’s delusional social networks (for 

1990 and 1992; the 1993 case is less clear) show good fits to geodesic cycle length distributions, 

in particular for the largest geodesic cycle length. However for the other networks examined, 

including empirical social networks, and a fictional character network, the ERGM models fit 

geodesic cycle length distributions well, as do (with two exceptions, which can be explained by 

the ERGM taking account of node attributes which the 𝑑𝑘-series does not) the 𝑑𝑘-series 2.5𝑘 

distributions. This would appear to indicate that there is something “special” about Patricia’s 

networks in this regard. Perhaps, as discussed by Martin (2017), this is because Patricia’s networks 

are the product of a single mind (leaving aside the reality or otherwise of multiple personalities) 
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and reflect her spatial idea of what a social network “should” look like. In contrast, the other 

networks are either empirical, or in the case of the sole fictional network, the Grey’s Anatomy 

network, the product of multiple creators (over an extended period). 

This work suggests that geodesic cycle length distributions could be useful goodness-of-fit 

diagnostics for social network models, in addition to the usual ones of degree distribution, 

maximum geodesic distance, edge-wise and dyad-wise shared partners, and triad census, as used 

in statnet. In the case of empirical networks, that ERGMs, explicitly based on their local (social 

circuit) dependence assumption, reproduce well the (non-local) geodesic cycle size distribution is 

an encouraging confirmation that purely local interactions really can produce the observed global 

structures. 

 

The high school dating network from the Add Health research program described in Bearman, 

Moody, and Stovel (2004) also notably contains a large geodesic cycle (“hollow ring”). Bearman 

et al. (2004) propose a normative proscription against four-cycles (“don’t date your old partner’s 

current partner’s old partner”), based on low number of four-cycles in their data relative to 

simulated networks. However, Rolls et al. (2015) find in a more sophisticated ERGM model of 

this data with acceptable goodness-of-fit that small numbers of four-cycles are generated. The 

(much smaller) fictional Grey’s Anatomy sexual contact network contains seven four-cycles (of 

which all seven are chordless and five are geodesic) – violating this proposed proscription could 

be because it makes compelling entertainment (Lind 2012). I could not find a converged ERGM 

with a four-cycle term for this network to explicitly test for over- or under-representation (neither 

could (Lind 2012)). But note the ERGM (but not the 𝑑𝑘-series) fits geodesic cycles of length four 

(and also cycles and chordless cycles of length four) well, similar to the case for four-cycles in 

Rolls et al. (2015) for the Bearman et al. (2004) network. It would also be interesting to test the 

geodesic cycle length distribution of this network. Although Rolls et al. (2015) have an ERGM 

model of this, it is quite involved (multilevel, fixing various ties), and the data are not publicly 

available (in Rolls et al. (2015) the network was recoded manually from the figure in Bearman et 

al. (2004)). 

 

It could be informative to repeat the modeling and geodesic cycle size comparisons with other 

fictional networks, specifically those with a single author, to test the hypothesis that such cases 

would also produce anomalous geodesic cycle length distributions like Patricia’s. However, fitting 

ERGMs to these is difficult. There is usually a main character, who is linked to most of the other 

characters, creating a single very strong “hub” node, which causes problems for ERGM model 

fitting. This problem can potentially be overcome by fixing the ties for that character, but I have 

not been able to get good converged ERGMs for the publicly available data sets I have tried (Les 

Misérables, David Copperfield, Anna Karenina, Huckleberry Finn). Note that this is not the case 

with Patricia’s networks: “Patricia” is not, as it were, the star of her own story in relation to her 

alters. I was able to fit all three Patricia networks well with ERGM, as well as the other six 

networks described earlier. ERGMs also have the advantage of allowing node attributes, while the 

𝑑𝑘-series models are purely structural. 

 

This difficulty with ERGMs (having to only use data for which a converged model with good fit 

can be obtained) is one reason Martin (2017) gives for using 𝑑𝑘-series instead. The present work 

confirms that the 𝑑𝑘-series approach can work as well as ERGM for the purposes of simulating 
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appropriately constrained random graphs (rather than making statistical inferences on model 

parameters), at least when when node attributes are not available or not structurally relevant. 
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Appendix A. Visualizations of other networks 
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Appendix B. ERGM models for other networks 
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