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Abstract: In the following, we offer a theoretical approach that attempts to explain (Comments 1-3) 
why and when the Macaulay duration concept happens to be a good approximation of a bond’s price 
sensitivity. We are concerned with the basic immunization problem with a single liability to be dis-
charged at a future time q. Our idea is to divide the class K of all shifts a(t) of a term structure of inter-
est rates s(t) into many classes and then to find a sufficient and necessary condition a given bond 
portfolio, dependent on a class of shifts, must satisfy to secure immunization at time q against all shifts 
a(t) from that class. For this purpose, we introduce the notions of dedicated duration and dedicated 
convexity. For each class of shifts, we show how to choose from a bond market under consideration 
a portfolio with maximal dedicated convexity among all immunizing portfolios. We demonstrate that 
the portfolio yields the maximal unanticipated rate of return and appears to be uniquely determined as 
a barbell strategy (portfolio) built up with 2 zero-coupon bearing bonds with maximal and respective 
minimal dedicated durations. Finally, an open problem addressed to researchers performing empirical 
studies is formulated. 

Keywords: barbell strategy, convexity, dedicated duration, Macaulay duration, unanticipated rate of re-
turn. 

 

1 Introduction 
 
Consider an investor who possessing C dollars today 
must achieve an investment goal of L dollars (L > C) 
q years from now by means of a purchase of appro-
priately selected bond portfolio (BP). If not success-
ful, he/she will incur a penalty, while achieving more 
than L dollars will result in practically no rewards. 
Such investors are called bond immunizers. It is 
natural to assume that C is the present value of  L 
dollars. 

By the term structure of interest rates, one under-
stands a schedule of spot interest rates s(t) which is 
estimated from the yields of all coupon-bearing 
bonds available on a given debt market M under 
consideration. The basic immunization problem 
(BIP) relies on a construction of such a bond portfo-
lio BP with the present value of C dollars that the 
single liability to pay L dollars (L is the future value 
of C) q years from now will be discharged by means 
of the inflows c(t) generated by portfolio BP, 
no matter what shocks/shifts a(t) of s(t) will occur. 

 

 

The new term structure is always of the form: 

s*(t) = s(t)+ a(t)  (1) 

with a(t) standing for a shift / shock of our term 
structure s(t), which satisfies Assumption 1 only. 
The function s(t) can exhibit various behaviors, 
for example, it can be flat, rising, declining, humped, 
or twisted. The classical results refer to flat shifts a(t) 
and flat term structures s(t), and they go back as far 
as to the pioneering work of Macaulay (1938), Red-
ington (1952), and Fisher (1971). 

In this paper, we approach the BIP by dividing 
the set K of all possibly shits a(t) into infinitely many 
classes  Kv and then solve BIP for each of these clas-
ses separately, with durations  Dv accordingly tai-
lored to the specifics of the class Kv. Similar 
to Zheng in (2002) and (2007), we are not interested 
in building or borrowing from the literature a more 
or less accurate stochastic or deterministic model 
of the term structure s(t), as is the case in some pub-
lications, for example, Bansal and Zhou (2002) and 
Litterman (1991), simply because the specifics 
of term structure models will not play any role in our 
studies, as is stated in our Assumption 1. 
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Assumption 1 

All shifts a(t), as well as all realizations of the gov-
erning term structure s(t), are continuous functions. 

As of today, however, no one was successful in 
building up a bond portfolio BP, with the present 
value of C dollars, whose value at a future time q 
would never be less than the future value of  C dol-
lars (L dollars) at time q, no matter what shocks a(t) 
of the term structure s(t) will occur in the future. 

As a matter of fact, it was demonstrated (Corollary 
2) in a recent paper by Zaremba and Rządkowski 
(2016) that given an arbitrary bond portfolio BP, 
the set of all continuous shocks a(t) of any continu-
ous term structure s(t), against which BP is immun-
ized, is an (m − 1) dimensional linear subspace in the 
m-dimensional linear space K of all continuous shifts 
a(t), with m standing for the number of instances 
when BP promises to pay cash (coupons or par val-
ues) 

Our goal in this paper is fourfold: 

(i) to divide set K into infinitely many classes vK ; 

(ii) for each class vK  (one of them will comprise 

all parallel shifts), to find a sufficient and neces-
sary condition, a given bond portfolio BP must 
satisfy to secure immunization at time q against 

all shifts a(t) from class vK ; from now on, the 

set of these immunizing portfolios vBP  against 

shocks a(t) from class vK  will be denoted by 

v ; 

(iii) to identify a bond portfolio vBP * v
 with 

the highest convexity; and 

(iv) finally, to find a bond portfolio with maximal 

unanticipated rate of return among all vBP

v . 

We will shortly see that set v
 of all immunizing 

bond portfolios against shifts a(t) from class vK con-

sists of portfolios such as vBP = ( 1w , 2w ,…, mw ) 

whose weights iw satisfy Equation (2) and (2a).  

The opposite (in some sense) problem, although 
closely related, was tackled in two recent papers by 
Rzadkowski and Zaremba (2010; 2016) where 
the main task was to characterize all shifts a(t) that 
satisfy Equation (2) for a given specific bond portfo-
lio  

BP = 1(w , 2w , 3w ,…, )wm . 

For this purpose, in 2010, a Hilbert space approach 
was used with orthonormal polynomials playing the 
major role, while in 2015, the key role was played by 
the so-called triangular functions. 

As far as goals (iii) and (iv) are concerned, similar 
problems were already investigated in Zaremba 
(1998) for proportional shifts explored earlier by 
Elton and Gruber (1995) and next in Zaremba and 
Smolenski (2000) for the so-called generalized pro-
portional shifts. However, in these two papers, rates 
of return were compounded in a discrete manner, 
while the continuous compounding framework is 
used in this paper. 

 
2 Initial considerations 
 
The inspiration as how to divide set K of all shifts 
a(t) of the term structure s(t) into infinitely many 

classes vΚ  will come soon from Equation (2). 

The resulting division into classes vΚ  is presented 

in Section 3. 

Before we arrive at Equation (2), let us remind our-

selves that all bond portfolios vBP  that we will be 

dealing with are constructed from debt instruments 

available on a given financial market M. Let 0t  

stands for the very moment when an investor bought 

vBP , while 

1t , 2t , 3t , …, mt = T  

comprise all instances from interval [ 0t ; T] repre-

senting the life span (expressed in years) of portfolio 

vBP , when either vBP  generates payments ic  at it , 

mi1   (in the form of coupons or par values) or 

the owner of vBP expects to be required to pay 

his/her liabilities at some time q. In other words, we 

assume that ntq   for some n, mn1  . 
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We start by invoking Theorem 1 from Rzadkowski 
and Zaremba (2000), which can be formulated as the 
following. 

Fact 1 

Let q denotes a future date when a single liability 
of  L dollars has to be discharged by means of the 
cumulated value of the inflows generated by some 
bond portfolio BP whose present value equals the 
present value of L. In addition, let Assumption 1 
holds.  

Then the payment of  L dollars at time q will be 
guaranteed (immunization will be secured), provided 
the following necessary and sufficient condition, 
having nothing to do with the kind of dynamics 

of the continuous term structure s(t)  of interest 

rates, but referring solely to its continuous shifts a(t)  

holds: 







mi

1i
iii )a(twta(q)q  (2) 

with 











mi

1i
iii

kkk
k

)t)(texp(c

)t)s(texp(c
w  (2a) 

standing for the weight of the cash kc , mk1  , 

payable by BP at time kt . 

Looking at (2), one sees that what really matters 

in Equation (2) are the values of a(t)  at instances 1t , 

2t , 3t , …, mt  only, that is, )a(ti , including a(q). 

Let us separately consider 2 cases: 

(a)  0a(q)   

(b)  0a(q)  (3) 

In case of scenario (a), when the new interest rate 
s*(q) at time q remains the same as it was before the 
shift a(t) has occurred, that is  

s*(q) = s(q) + a(q) = s(q),  

the right-hand side of (2) must be equal to 0. 

Fact 2a 

Assume a shift a*(t) satisfies two conditions: 

(i) 0(q)*a     and 

(ii) for all instances 1t , 2t , 3t , …, mt , the values 

)(t*a i  are nonnegative numbers or all )(t*a i  

are nonpositive numbers except for ntq  . 

Then BP = ( 1w , 2w ,…, mw ) is an immunizing bond 

portfolio against shift a*(t) if and only if the equali-
ties (4) hold, where 

0)(t*aw ii  , mi1   (4) 

Proof. Observe that all it  are positive numbers, kw  

are nonnegative, and consequently, the right-hand 
side of Equation (2) must be either  

 nonnegative (whenever )(t*a i are nonnegative) 

or  

 nonpositive (whenever )(t*a i are nonpositive).  

As the right-hand side of Equation (2) equals 0, 
the condition (4) follows. 

Fact 2b 

Assume that a shift a*(t) satisfies two conditions: 
(i) 0(q)*a  and 

(ii) for all instances 1t , 2t , 3t , …, mt , the values 

)(t*a i  are negative numbers or all )(t*a i  are 

positive numbers except for ntq  . 

Then the only immunizing bond portfolio against 
shift a*(t) is the one (if it exists on the debt market 
M), say B*, that matures at time q and reduces to 
a zero-coupon bond. If, however, such B* is not 
tradable on bond market M, then there is no immun-
izing bond portfolio against a*(t). 

Proof. Observe that by virtue of Fact 2a, 

0)(t*aw ii  .  

If a zero-coupon bond B* maturing at time ntq   is 

tradable on market M, then condition (4) is satisfied 

with 1wn  , 0wi  , ni  . But, if there is no such 

bond B* on market M, then each other immunizing 
bond B, if existed, would generate at least one pay-

ment at some instance qti  . This, however, would 

mean 0wi  , and by virtue of (ii) would lead to the 

inequality 0)(t*aw ii   that cannot hold because 

we have already demonstrated that 0)(t*aw ii  .  

The proof is completed. 
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3 Dedicated for class Kv duration Dv 
(when a(q) ≠ 0) 

 
In what follows we will be dealing with the most 
general scenario (b) when 0a(q) . In such a case, 

we can rewrite Equation (2) into an equivalent form 







mi

1i

i
ii a(q)

)a(t
wtq  (5) 

For each vector  
m

m21 R) v,...,v,(vv    

we will define the class vΚ  of those shifts a(t) of the 

term structure s(t) for which 

a(q)

)a(t
v i

i   (6) 

For example, when v (1, 1, …, 1), then the corre-

sponding class vΚ  comprises all parallel shifts be-

cause each parallel shift a(t), being a constant 
function, satisfies the condition 

a(q)

)a(t
v1 i

i   (7) 

Clearly, in case (7), our necessary and sufficient 
immunization condition (5) reduces to the very well-
known fact stating that 

q = D, with 





mi

1i
ii wtD  

being the classical duration. (8) 

For each vector 

m
m21 R)v,...,v,(vv   

the natural question arises how to solve Equation (5) 

with unknown variables iw  that depend on decision 

variables ic  shown in Equation (2) or, equivalently, 

how to solve the equation 

i

mi

1i
ii vwtq 





 (9a) 

with the known parameters it , iv . Clearly, condition 

(9a) can be equivalently rewritten as q = vD  with: 







mi

1i
iiiv vwtD  (9b) 

m
m21 R)v,...,v,(vv  , (9b) 

so that Fact 1 can be reformulated as follows. 

Fact 3 

Let q denotes a future date when a single liability 
of L dollars has to be discharged by means of the 
cumulated value of the inflows generated by bond 
portfolio BP. In addition, let Assumption 1 holds.  

Then, assuming that all admissible shifts a(t) belong 

to class vΚ , the payment of L dollars at time q will 

be secured provided the following necessary and 
sufficient condition holds: 







mi

1i
iiiv vwt(BP)D = q with 

a(q)

)a(t
v i

i  ,  

) v,...,v,(vv m21 , (10) 

and kw  standing the weight of the cash kc , 

mk1  , payable by BP at time kt . 

Definition 1 

Let  

BP = 1(w , 2w , 3w ,…, )wm  
be the bond portfolio with iw  standing for the 

weight of the cash ic  payable by BP at time it , 

and let: 
m

m21 R) v,...,v,(vv    

be an arbitrary m-dimensional vector. Then the num-

ber vD  defined by Equation (9b) is said to be the 

duration dedicated for class vΚ  ( vΚ  consists of all 

shifts a(t) satisfying 

a(q)

)a(t
v i

i   ). 

It immediately follows from this definition that 

a zero-coupon bearing bond maturing at time it  has 

dedicated duration vD = ii vt   depending on class 

vΚ , m
m21 R)v,...,v,(vv  .  

Formula (9b) occurring in the definition of dedicated 
duration can thus be rephrased as follows.  
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If we divide bond portfolio BP into real or imaginary 
zero-coupon bearing bonds  

iB , mi1   

with par values of iB  being equal to the cash ic  
payable by BP at instant it , then the dedicated dura-

tion of BP, vD (BP), is a weighted average of dedi-

cated durations of iB , denoted by vD ( iB ), that is: 

vD (BP) = i

mi

1i
ii vwt 





=




mi

1i
iw vD ( iB )  (11a) 

Remark 1 

To avoid in future the possible misunderstandings, 
let us clarify what we shall mean in this paper 
by writing “a bond portfolio BP consists of n differ-

ent bonds kB ”. By writing this, we are trying to say 

that BP is built up with n (say three) types of bonds, 

for example, BP consists of 210 bonds of type 1B , 

440 bonds of type 2B , and 170 bonds of type 3B . 

In other words, we treat all copies of the same type 
of bond as just 1 bond (1 cash flow) and denote it by 

kB  depending on the type of a bond. 

Fact 4 tells us that Formula (11a) can be further gen-
eralized. 

Fact 4 

Let a bond portfolio BP consists of n different (not 

necessarily zero-coupon) bonds kB  with dedicated 

durations  

vD ( kB ), nk1  .  

Then the dedicated for class vK
 duration of BP,  

vD (BP), is given by the formula 

vD (BP) = 




nk

1k
kw vD ( kB ) (11b) 

where each kw , nk1  , represents the propor-

tion of money spent on the purchase of bond kB , 

expressed as a fraction of the total cost incurred 
for the purchase of BP. 

Proof. Suppose, for the sake of simplicity of presen-
tation, that a bond portfolio BP is built of just two 

bonds, say 1B  and 2B , whose dedicated for class 

vK
 durations 

1
vD and 

2
vD , respectively, satisfy the 

relationships, by Definition 1, 








m

1i
i1

ii
1

i
i

1
v v

)PV(B

)t)s(texp(c
tD , 








m

1i
i2

ii
2

i
i

2
v v

)PV(B

)t)s(texp(c
tD  (12) 

with i
2

i
1

i ccc  ,where ic  is the cash paid by BP 

at time it . 

Therefore, 

vD (BP) = 




























i

m

1i
2

ii
2

i
i

2

i

m

1i
1

ii
1

i
i

1

m

1i
i

ii
2

i
1

i
i

v
)PV(B

t)s(texpc
t

PV(PB)

)PV(B

v
)PV(B

t)s(texpc
t

PV(PB)

)PV(B

v
PV(BP)

t)s(t)expc(c
t

 

1
v1 Dw   +

2
v2 Dw  ,

PV(PB)

)PV(B
w

k

i  , 2k1  . 

Let us now comment a fairly widespread opin-
ion/hypothesis among the researchers that “the sim-
plest Macaulay duration provides the most cost-
effective immunization method.” 

Comment 1 

Looking at the definition of dedicated duration vD  

for class vK , cf. Equation (9b), one sees that the 

classical Macaulay duration measure, being identical 

to our dedicated duration vD , with  

v = (1, 1, …, 1)  

is a natural, possible, and the most likely candidate 
for a one-number sensitivity indicator of a bond’s 
price applicable to all nonparallel shifts of term 
structure s(t). 

To formulate such an opinion/hypothesis, one may 
not need to do any empirical research of the debt 
market under consideration.  
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However, it seems reasonable and desirable to per-
form empirical research referring to the computation 
of vectors 

m
m21 R) v,...,v,(vv   with 

a(q)

)a(t
v i

i    

based on historical data. As a result of such research, 
it might, for example, happen that on some real debt 
markets, for example, in Japan, Kazachstan, and 
Poland, the Macaulay duration would occur not to be 
“the most cost-effective immunization method.” 

However, we will prove in Theorem 1 that for those 
bond immunizers who maximize the unanticipating 
rate of return, the knowledge of all coordinates of the 

vector ) v,...,v,(vv m21  is not really needed (see, 

Comment 2). To prove Theorem 1 in Section 5, we 
will need the following assumption. 

Assumption 2 

All zero-coupon bearing bonds iB  maturing at time 

it , mi1  , have mutually different dedicated 

durations, that is, vD )(BD)(B jvi   if and only if 

ji   which is the same as to say that  

 ii vt jj vt   ji  . 

 
4 Dedicated convexity 
 
When the term structure of interest rates is a function 
s(t), then the present value of an arbitrary bond port-

folio BP generating cash flow tc  is given by the 

formula 

PV[ )s( ] =  
t

t t]s(t)exp[c  (13) 

with index t varying over all instances 1t , 2t , 3t , 

…, mt  when portfolio BP is paying cash. Suppose 

that immediately after the acquisition of BP, the term 
structure s(t) shifted to its new level s*(t) = s(t) + a(t) 
with a continuous shift a(t) according to Assumption 
1. 

Then, the present value of BP will also shift to its 
new value, namely, 

PV[ )(a)(s  ] =  
t

t ta(t)]s(t)exp[c  (14) 

where, as previously, t varies over all instances 

 1t , 2t , 3t , …, mt .  

In order to explain formula (16), let us note that if  

h(s) = exp[ s ]t  ,  

then: 

h′(s) = t]sexp[t    

h″(s) = t]sexp[t2   (15a) 

and, consequently, by the Taylor approximation for-
mula, one has 

h(s + a) – h(s)  at]sexp[t
222

2
1 aO(a)at]sexp[t  ,  (15b) 

with 

lim O(a) = 0 when 0a  .  (15c) 

Generalizing this line of reasoning, we can estimate 
the unanticipated change in the value of the bond 

portfolio BP as follows (the term 2
k

m

1k
k )a(t)]O[a(t 



 

was omitted): 

 PV[ )a()s(  ]- PV[ )s( ] 





m

1k
kkkkk )a(t])ts(t[expct{  

)}(ta])ts(texp[c[t k
2

kkk
2

k2
1    (16) 

Dividing both sides by the present value of BP, that 

is, PV[ )s( ] , we obtain the following relationship 

for the unanticipating rate of return (occurring on the 
left-hand side of the following equality): 





)]PV(s(

)]PV(s()]a()PV[s(  





m

1k
kkk ))/a(q)]a(qa(twt[  

}))]a(tO[a(t)(taw{t 2
kk

m

1k
k

2
k

2
2
1 



 (17a) 
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Making use of the notion of dedicated duration vD  

for class vΚ  of those shifts a(t) of the term structure 

of interest rates s(t) for which  

a(q)

)a(t
v i

i  , ) v,...,v,(vv m21 ,  

one arrives at 

)]PV(s(

)]PV(s()]a()PV[s(


  a(q)(BP)Dv




m

1k
k

2
k

2
2
1 )(taw{t }))]a(tO[a(t 2

kk . (17b) 

Definition 2 

Let  

BP = 1(w , 2w ,…, )wm  

be a bond portfolio BP with weights iw , and let 

) v,...,v,(vv m21   

be an arbitrary m-dimensional vector.  

The number 





m

1k

2
kk

2
k2

1
v vwt(BP)C  (18) 

is said to be dedicated for class vΚ  convexity of 

portfolio BP, having in mind that vΚ  is a class 

of shifts a(t) satisfying 
a(q)

)a(t
v i

i  . It immediately 

follows from Definition 2 that the dedicated for class 

vK  convexity vC  of a zero-coupon bond maturing 

at time it  is given by the formula 
2

i
2

i2
1

v vtC  . 

Formula (18) occurring in the definition of convexity 
can thus be read as follows: If we divide bond port-

folio BP into zero-coupon bearing bonds iB , 

mi1  , with par values of iB  being equal to the 

cash ic  paid by BP at instant it , then the dedicated 

convexity of BP, vC (BP), is a weighted average of 

dedicated convexities of iB , denoted by vC ( iB ), 

that is 

vC (BP) = 




mk

1k
kw vC ( kB ).  (19) 

Fact 5 tells us that formula (19) can be further gener-
alized (see Remark 1). 

Fact 5 

Let a bond portfolio BP consists (is built up) of 

n different (not necessarily zero-coupon) bonds kB ,

nk1  , with convexities vC ( kB ). Then the con-

vexity of BP is a weighted average of convexities 

vC ( kB ) given by formula(19), with kw  represent-

ing the proportion of money spent on the purchase 

of bond kB , expressed as a fraction of the total cost 

incurred for the purchase of BP. 

Proof. Suppose, for the sake of simplicity of presen-

tation, that a bond portfolio BP is built of bonds 1B  

and 2B , whose convexities 1
vC  and 2

vC satisfy 

by Definition 2 the relationships 








m

1i

2
i1

ii
1

i2
i

1
v v

)PV(B

)t)s(texp(c
tC , 








m

1i

2
i2

ii
2

i2
i

2
v v

)PV(B

)t)s(texp(c
tC ,  (20) 

with i
2

i
1

i ccc  , where ic  is the cash paid by BP 

at time it . Therefore, 

vC (BP)= 





m

1i

2
i

ii
2

i
1

i2
i v

PV(BP)

)t)s(t)exp(c(c
t  







2
i

m

1i
1

ii
1

i2
i

1

v
)PV(B

)t)s(texp(c
t

PV(PB)

)PV(B
 

2
i

m

1i
2

ii
2

i2
i

2

v
)PV(B

)t)s(texp(c
t

PV(PB)

)PV(B 





 = 

1
v1 Cw   +

2
v2 Cw  , 

PV(PB)

)PV(B
w

k

k  , 2i1  . 

We can now rephrase formula (17b) into a more 
convenient (handy) manner as follows. 
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Fact 6 

Suppose a bond portfolio BP had been purchased 
and then the term structure s(t) of interest rates 
switched to its new level s*(t) = s(t) + a(t).  

Then the unanticipated rate of return resulting from 
the purchase of BP satisfies the relationship 

)](s(PV

)](s(PV)](a)(s[PV




(q)a(BP)Ca(q)(BP)D 2
vv  +




m

1k
k )]O[a(t 2

k)a(t  (21) 

with O(a) satisfying (15c). It’s worth to notice that 

)(ta k
2

 are rather small factors because the absolute 

values of shifts a(t) are often smaller than 1% = 0.01, 
and pretty often they are even close to 0.001. 

If we apply Equation (21) to a zero-coupon bearing 

bond maturing at time it , say iB , we will obtain that 

the unanticipated rate of return on 

iB = 2
ii

22
i

2
i2

1
ii )a(t)]O[a(t(q)avta(q)vt    

provided instantly after the acquisition of bond iB , 

the term structure s(t) shifted to its new level  

s*(t) = s(t)+a(t), with 
a(q)

)a(t
v i

i  . 

 
5 Maximizing the unanticipating rate  

of return 
 
In this section, we approach the problems formulated 
in (iii) and (iv), namely, we want to character-

ize/identify the bond portfolios PB v  that yield 

the maximal unanticipating rate of return among all 

portfolios BP v  that, by definition, are immun-

ized against shifts a(t) from class vK .  

As we have already derived a formula for the unan-
ticipating rate of return in the form of relationship 
(21) and we know that the dedicated duration 

(BP)Dv  = q, all we need to do to solve (iv) is to 

solve (iii), that is, we should maximize the dedicated 
convexity (18).  

The latter can be done by optimally choosing 

weights kw  given in Equation (2a) through the ap-

propriate choice of the cash flow { kc }, mk1  , 

representing our decision variables. 

Following Elton and Gruber (1995, p.552), a bond 
portfolio BP is said to be a barbell strategy (barbell 

portfolio) if it is built up of just two bonds, say 1B  

and 2B , with significantly different dedicated dura-

tions 
1

vD  and 
2

vD , respectively.  

On the other hand, BP is said to be a focused strategy 
(focused portfolio) if it consists of several bonds 

whose dedicated durations 
j

vD  are centered around 

duration of the liability (q, in this context). 

Theorem 1  

Suppose Assumptions 1 and 2 hold.  

 Let vBP * vΦ  be a bond portfolio with the 

highest dedicated convexity (18) in the class vΦ  

of all bond portfolios immunized against shifts 

a(t) from set vK .  

 Let 
kB , nk1  , denote those bonds tradable 

on the debt market M under consideration from 

which vBP * is built up.  

Then vBP * is uniquely determined as the barbell 

strategy built up of two specific zero-coupon bearing 

bonds, namely, sB  with the minimal and lB  (max-

imal) dedicated durations, respectively. 

The weights sx  and lx  associated with the pay-

ments of vBP * at instances st  and lt  are given by 

formula (27); they represent the proportions of mon-

ey spent on the purchase of bonds sB and lB , ex-

pressed as a fraction of the total cost incurred for the 

purchase of PB . 

Proof. Although vBP * has been created by purchas-

ing n bonds 
kB , nk1  , tradable on the debt 

market M, we will look at vBP * from a different 

prospective. Namely, we will say that vBP * consists 
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of m zero-coupon bonds iB , each of them maturing 

at time it  and generating the same payment of ic  

dollars as vBP * is promising to pay ( mi1  ). 

By virtue of formulas (9b) and (18), the maximiza-

tion of dedicated convexity vC (BP) leads to the 

following optimization problem, with decision varia-

bles ix , mi1  , representing the proportion 

of money spent on the purchase of bond iB , ex-

pressed as a fraction of the total cost incurred for the 
purchase of  BP: 

max 



m

1i

2
ii

2
i2

1 vxt : 1x
m

1i
i 



; qvxt
m

1i
iii 



 

0xi   (22) 

As all functions occurring in Equation (22) are linear 

in ix , the Kuhn–Tucker conditions 





 )x,...,x,x(
x

L
0 m21

i

iii21
2

i
2

i2
1 λvtμμvt   

mi1   (23a) 

0λx ii  , 0λi  , 0xi  , mi1   (23b) 

with )x,...,x,x( m21  representing the weights of 

vBP * are necessary and sufficient for optimality of 

vBP *, with the Lagrangian 

)x,...,x,L(x m21

)xλvxtμxμvx(t ii

m

1i
iii2i1

2
ii

2
i2

1 


 

mi1  .  (24) 

We start by proving that all but two weights ix
 are 

equal to 0. Suppose on the contrary that 

0xi  , 0x j  , 0xs  . (25) 

Then by virtue of Equation (23b), we would then 
infer that  

0λi  , 0λ j  , 0λs  ,  

and then, by invoking Equation (23a), we would get 
that the quadratic function 

v)(tμμv)(tv)f(t 21
2

2
1    

would be equal to 0 for three distinct (by virtue of 

Assumption 2) roots iivt , jjvt , and ssvt , what is 

impossible because each polynomial of degree 2 has 

no more than 2 roots. Thus let 0xl   and 0xs   be 

the two only weights that are different (greater than 

0), meaning that vBP * generates cash in just two 

instances, lt  and st . From Equation (22), we know 

that 

qvxtvxt ssslll  ;  

1xx sl  ;  0xl  ;  0xs  .  (26) 

This is a system of two equations with two unknown 

variables lx  and sx . Solving it, we obtain the for-

mulas (27) for lx  and sx (without loss of generality 

one may assume that 

ssll vtqvt  ) 

ssll

ll
s vtvt

qvt
x




 , 
ssll

ss
l vtvt

vtq
x




 , 

with the remaining variables 

ix = 0.  (27) 

We will demonstrate that bonds sB and lB  have the 

shortest and resp. longest dedicated durations and 

that vBP *  is uniquely determined. In fact, it follows 

from Equation (23a) that: 

0 )x,...,x,x(
x

L
m21

s


  and  

)x,...,x,x(
x

L
0 m21

l


 , that is, 

ss21
2

s
2

s2
1 vtμμvt0  = 

il21
2

l
2

l2
1 vtμμvt    (28) 

because  

sλ  = lλ = 0  

by virtue of  

0λx ss   = ll λx  . 
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From Equation (28), we immediately derive two 

formulas for 1μ , namely, 

2
s

2
s2

1
ss21 vtvtμμ   and 

2
l

2
l2

1
ll21 vtvtμμ  ,  (29) 

the latter resulting in   

)vtv(tμ ssll2
1

2  .  (30) 

Having proved Equation (30), we infer from Equa-
tion (29) that 

ssll2
1

1 vtvtμ  ,  (31) 

and then substitute Equations (30) and (31) into 
Equation (23a) to obtain the relationship 

 )vtvt(vt0 ssll2
12

i
2

i2
1      

iiissll2
1 λvt)vtv(t   (32) 

from which the following formula 

)vtv(t)vtv(tλ ssiiiill2
1

i   (33) 

can be deduced by performing elementary transfor-
mations. 

In order to have the necessary condition 0λi   sat-

isfied, we must choose ll vt   to be the largest number 

and ss vt  to be the smallest number among all ii vt  .  

Such a choice is the same as picking from the market 

M two zero-coupon bonds, one lB  with the maximal 

dedicated duration ll vt  , and the other bond sB  

with the smallest dedicated duration ss vt    

With such a choice of dedicated durations, all three 
necessary and sufficient conditions, namely, 

0λx ii  , 0λi  , 0xi  , mi1  ,  

are now satisfied by the barbell bond portfolio 

,BPv what is clearly seen from Equations (27) and 

(33). 

In this way, we have uniquely identified via formula 
(27) the weights of the bond portfolio BP with the 
maximal dedicated convexity.  

In order to claim the uniqueness of vBP *, it is 

enough to invoke the fact that the present value 

of  vBP * equals the present value of liability L to be 

paid off at the specified time 

q, m1 tqt  . 

 
6 Concluding remarks 
 
Comment 2 

It follows from Theorem 1 that what really matters, 
from the point of view of bond immunizers, are not 
all coordinates of the vector  

m
m21 R) v,...,v,(vv   

determine the class vK  of shifts a(t), but two of 

them, namely, sv  and lv  for which ss vt   and 

li vt   stand for the minimal and resp. maximal dedi-

cated durations, respectively, among all durations 

vD = ii vt  , mi1  , 

if bond immunizers are choosing portfolio vBP * 

specified in Theorem 1. 

However, it seems likely to this author that many 
bond managers do not immunize their liabilities by 

means of portfolio vBP *, but making use of other 

immunizing barbell portfolios vBP . Therefore, there 

is no point that they will be much interested in esti-
mating all coordinates of the vector 

) v,...,v,(vv m21   

if only two of them really matter. 

Now we begin to realize that the answer to the ques-
tion raised in the title of this paper depends on the 
choices made by bond immunizers. If they immunize 
their liabilities by choosing barbell portfolios paying 

cash at instances it  and jt  such that 

(a) 1vi  , 1vj   or (b) 1vj  , 1v j    (34) 

then such bond immunizers diminish the chances 
that Macaulay duration  







mi

1i
iiwtD   

reducing in case of barbell portfolios to the formula  



 Does Macaulay Duration Provide the Most Cost-Effective Immunization Method – A Theoretical Approach 109 

jjii wtwtD 
 

accurately approximates the dedicated duration 

jjjiiiv vwtvwtD  .  

But if they select such barbell portfolios vBP  for 

which 1vv ji  or the product ji vv   is close to 1  

( 1vv ji  ), then the dedicated duration and Macau-

lay duration become closer to each other. 

Comment 3 

The natural question arises how much (to what ex-

tend) the weights given by Equation (27), with sx , 

lx  meaning the same as sw  and lw  above, differ 

from the weights 

sl

l
s tt

qt
x




   and  
sl

s
l tt

tq
x




   

derived from the Macaulay duration when v = (1, 1, 
…, 1). Various approaches can be used to answer 
this question. Some of them may involve knowledge 
of historical data, while the other may rely solely 
on simulation techniques independent on the history 
of shifts a(t) of the term structure s(t). 

Open Problem: Is the Macaulay duration the best 

choice among all dedicated durations vD ? In what 

sense the best? Call this the question Q. To give 
answer to question Q, one may attempt to approach 
it by answering the following subquestions: 

(a) Is the relationship  

(i) 1vv ls   or  

(ii) 1vv ls    

sufficient for the positive answer to question Q ? 

(b) Suppose that the weights (27) of the barbell port-

folio vBP * with the highest convexity differ “very 

little” from the weights 

sl

l
s tt

qt
x




  and 
sl

s
l tt

tq
x




 .  

Does this guarantee the positive answer to question 
Q ? 

 

(c) Suppose that the weights 

iijj

jj
1 vtvt

qvt
x




  and 
iijj

ii
2 vtvt

vtq
x




   

of some (or many) other than vBP * barbell portfoli-

os immunized against shifts a(t) from class vK  dif-

fer “very little” from the weights  

ij

j
1 tt

qt
x




   and  

ij

i
2 tt

tq
x




 .  

Does this guarantee the positive answer to question 
Q ? 

(d) When the answer to question Q will be negative? 
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