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SUMMARY 

In this study the Akaike information criterion for detecting outliers in a log-normal 

distribution is used. Theoretical results were applied to the identification of atypical 

varietal trials. This is an alternative to the tolerance interval method. Detection of outliers 

with the help of the Akaike information criterion represents an alternative to the method 

of testing hypotheses. This approach does not depend on the level of significance adopted 

by the investigator. It also does not lead to the masking effect of outliers. 
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1. Introduction 

In analyzing the results of series of varietal experiments, a question often arises 

concerning the disqualification of some experiments. This is especially true when 

the precision of the experiments is not uniform. One may then reject an 

experiment with a large experimental error, which is a vague procedure, based on 

the suspicion that errors were made in the conduct of the experiment. For the 

detection of atypical experiments, Ohanowicz and Pilarczyk (1985) proposed 

tolerance intervals for the smallest significant difference expressed as a 

percentage of the average yield (known NRIP). It turned out that the distribution  

 



 

 

 

 

76                                                 A. Kornacki, A. Bochniak 

of the NRIP is clearly asymmetrical. It gives a good approximation to the log-

normal distribution. In this paper we propose to treat atypical experiments 

(observations) as outliers, and it is suggested that the Akaike information criterion 

may be used to detect such outliers. 

For the detection of outliers, hypothesis testing methods are most frequently 

used (Barnett and Lewis, 1994; Breuning et al., 2000; Ferguson, 1961; Grubbs, 

1960, 1969; Ramaswamy et al., 2000; Rousseeuw and Leroy, 2000; Srivastava 

and Von Rosen, 1998). However, in the hypothesis testing method the 

conclusions may differ depending on the assumed significance level. Moreover, 

the “masking” effect for outliers may be encountered. Grubbs (1969), in relation 

to data on the strength of plastic materials, describes a situation where the tests 

do not detect one least observation, whereas two least observations are identified 

as outliers (an apparent contradiction). 

The use of the Akaike information criterion, as suggested here, allows one to 

choose, out of the models describing the experimental data, that model which 

maximizes entropy (Akaike, 1973, 1977). According to Sakamoto et al. (1986), 

the value for this criterion equals:  

AIC = – 2 ln(max likelihood) + 2K            (1) 

where max likelihood denotes the likelihood calculated for parameter estimators 

obtained using the maximum likelihood method, and K denotes the number of 

these parameters. We select the model for which the AIC value is the smallest. 

This way of proceeding does not depend on the significance level, the number of 

outliers, or whether the “suspicious” observations are the lowest or the highest. 

The aim of the study was to use an outlier detection method based on the 

Akaike information criterion to find atypical experiments on wheat varieties, and 

to compare this method with the method based on tolerance intervals. 
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2. Log-normal distribution 

Definition: A random variable X has a two-parameter log-normal distribution 

with parameters (
2, ), denoted LN(

2, ), when its logarithm has a normal 

distribution, i.e. Y=lnX ~ N(
2, ). Thus we have X ~ LN(

2, )  

Y=lnX ~ N(
2, ).  

Limpert, Stahel and Abbt (2001) tabulate some of the areas where the log-

normal distribution is applied: in geology (concentration of the elements Co, Cu, 

Cr, 226Ra, Au and U), in medicine (latent period of infectious diseases, survival 

periods after being diagnosed with cancer), in environmental science (rainfall, air 

pollution, particle decomposition, environmental chemistry and organisms), in 

food technology, in ecology (species resources), in linguistics (length of words 

uttered in telephone conversations), in social science (marriage age, income), in 

operations research (time distribution in queuing), and others. 

It is known that the maximum likelihood estimators of the parameters in the 

log-normal distribution are equal (Krzyśko, 2004): 
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Let us consider a sample of n observations which, when arranged by 

increasing value, form the set )()2()1( nxxx   . Therefore, x(k) denotes the 

value of the k-th order statistics Xk:n. 

In the remainder of the paper the following notation will be used: ),,( 2 x  

denotes the cumulative density function for the distribution LN (
2, ), 

),,( 2 x  denotes the probability density function for the distribution  

LN (
2, ), ),,( 2

, xf nr  denotes the probability density function for the i-th 

order statistic Xi,n. 

So we have: 
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(David and Nagaraja, 2003), where B(p,q) denotes the beta function: 
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for natural numbers p and q, where )(x  denotes Euler’s function. 

We write 2*
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3. Outliers model 

Let us consider the following situation: we have an ordered sample:  
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from a log-normal distribution, where  nxxxx ,,, 21  . Outliers may be the 

lowest or the highest observations coming from populations characterized by 

various mean values 
*
2

*
1 and  . The ‘main part’ of the sample comes from the 

population with the mean * . Detecting outliers usually involves using the 

hypothesis testing procedure at some significance level. In such a case the 

hypotheses take on the following form: H0 – there are no outliers, that is to say
*
2

**
1  ; H1a – there are low outliers, that is to say 

**
1  ; H1b – there are 

high outliers, that is to say 
*
1

*   ; H1c – there are low and high outliers, that is 

to say 
*
2

**
1  . 
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 By setting the parameter values 21    respectively and   the same 

for all groups, we obtain:  
*
2

**
1   and 

*
2

**
1  .

 
 

Thus the model with outliers can be described in the following way  
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4. Akaike information criterion 

In order to calculate the Akaike criterion (1) we find the model likelihood 

function (5) 
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Thus the likelihood logarithm with respect to (2–4) is equal to:  
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that is to say: 
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where 211, nnnknij   and: 
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Finally, the value of the Akaike information criterion is equal to  
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where 
2

21
ˆ,ˆ,ˆ,ˆ  are the maximum likelihood estimators of the parameters. 

5. Materials and methods 

To compare the results obtained by the method used here and by the tolerance 

interval method, the original data presented by Pilarczyk (1988) were used in 

calculations. The basic experiment and exploratory evaluation of winter wheat 

varieties were carried out in 1983. It was a series of WGO experiments (study of 

the economic value of varieties). Each of them was conducted with 4 replications 

in a 1-resoluble design. In each incomplete block 15 to 33 different varieties were 

compared. The yield (average of all the tested cultivars) ranged from about 40 

q/ha to 70 q/ha depending on the experimental station. Grain yield calculated for 

a common humidity of 15% was the studied feature. Next, values of NRIP were 

calculated for all experimental stations. Yields of individual varieties do not 

participate in the NRIP calculation. Table 1 shows the values of ln (NRIP) in the 

experiment with wheat. 

6. Results and discussion 

The distribution of NRIP values is distinctly asymmetrical (see Fig. 1). The 

skewness is equal to 1.35408. 
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Table 1. Values of ln(NRIP) in experiments with wheat 

Values 

1.221 1.247 1.435 1.497 1.504 1.530 1.533 1.554 1.556 1.558 

1.633 1.668 1.670 1.688 1.708 1.728 1.728 1.730 1.761 1.763 

1.770 1.772 1.782 1.828 1.842 1.845 1.847 1.881 1.896 1.910 

1.918 1.923 1.926 1.930 1.939 1.949 1.954 1.966 1.970 1.971 

1.971 1.973 1.975 1.980 2.006 2.006 2.012 2.019 2.020 2.036 

2.036 2.055 2.58 2.069 2.069 2.076 2.083 2.091 2.097 2.107 

2.108 2.117 2.131 2.133 2.134 2.147 2.149 2.158 2.174 2.191 

2.201 2.204 2.213 2.217 2.260 2.266 2.268 2.273 2.274 2.309 

2.312 2.350 2.372 2.376 2.417 2.437 2.442 2.450 2.470 2.520 

2.526 2.530 2.612 2.711 2.750 2.756 2.988    

 

 

Figure 1. Distribution of NRIP values 

 Hence we use a transformation based on evaluation of the natural logarithms of 

the NRIP values. After the transformation, the results are well described by a 

normal distribution. This means that the NRIP values have a log-normal 

distribution. A verification of this fact is shown in Figure 1 and Table 2.  
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Table 2. Compatibility of NRIP with the log-normal distribution  

according to test statistics  

Test of log-normal distribution 

Name of test Statistics p-value 

Kolmogorov–Smirnov D=0.0546 > 0.150 

Cramer–von Mises W2=0.0531 0.474 

Anderson–Darling A2=0.3018 > 0.500 

 

It can be seen that all of the tests indicate no basis to reject the hypothesis of 

the log-normal distribution of the tested feature. 

Using the theory presented in section 4, we can find outlier observations for 

the NRIP values of winter wheat. The results are presented in Table 3. 
 

Table 3. Values of AIC for models with different numbers of outliers 

  Number of high outliers 

  0 1 2 3 4 5 

N
u

m
b

er
 o

f 
lo

w
 o

u
tl

ie
rs

 0 23.275 16.268 15.239 16.423 20.478 26.045 

1 25.147 15.995 13.278 12.828 15.426 19.782 

2 28.705 17.752 13.476 11.576* 12.920 16.180 

3 33.826 21.347 15.977 12.955 13.261 15.696 

4 38.320 24.423 18.089 14.040 13.369 15.049 

5 43.610 28.296 20.972 15.870 14.201 15.095 

* smallest value of AIC 

  

The outlier observations appear to be the three largest NRIP values (15.643; 

15.174; 19.846) and the two least (3.391; 3.480). Therefore these indicate atypical 

experiments. The results obtained here are largely consistent with those of 

Pilarczyk (Pilarczyk 1988). That author found the following 95% interval of 

tolerance for ln (NRIP): 

768.2)NRIPln(347.1               (6) 
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or equivalently 

.927.15NRIP846.3                (7) 

There are three experiments that are located beyond the tolerance interval, those 

having the two smallest and the highest NRIP value. The same points are 

identified in this paper by the outlier detection method. Differences in the results 

concern only the experiments with the second and third highest NRIP values, 

which lie within the tolerance intervals (6) and (7), but were identified as outlier 

observations. We can notice that for these the values of ln(NRIP) are almost 

equal, at 2.750 and 2.756, and differ from the right end-point of the tolerance 

interval by the very small amounts of 0.018 and 0.012. 

7. Conclusions 

 A method of detecting outliers based on the Akaike information criterion is 

used here to find atypical specific experiments. This is an alternative to the 

tolerance interval method. 

 The proposed method is an objective procedure independent of the adopted 

significance level, the number of outliers and whether the “suspicious” 

observations are the lowest or the highest. 

 The conclusions obtained by the proposed method are largely consistent with 

the results of Pilarczyk (1988) based on the tolerance interval method. 
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