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Abstract: We consider a coupled 3D model that involves computation of the stress-strain state for the body with thin inclusion. For the de-
scription of the stress-strain state of the main part, the linear elasticity theory is used. The inclusion is modelled using Timoshenko theory 
for shells. Therefore, the dimension of the problem inside the inclusion is decreased by one. For the numerical solution of this problem 
we propose an iterative domain decomposition algorithm (Dirichlet-Neumann scheme). This approach allows us to decouple problems 
in both parts and preserve the structure of the corresponding matrices. We investigate the convergence of the aforementioned algorithm 
and prove that the problem is well-posed. 
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1. INTRODUCTION 

A lot of structures, that occur in engineering, are inhomogene-
ous and contain thin parts and massive parts. Therefore, it is 
important to develop both analytical methods and numerical algo-
rithms for the analysis of the stress-strain state of such structures.  

Different aspects of such problems were discussed in Dyyak 
et al. (2012); Niemi et al. (2010); Savula et al. (2000); Vynnytska 
and Savula (2008); Nazarov (2005) (in Vynnytska and Savula 
(2008) the case of the bodies with thin inclusions is considered; 
in Dyyak et al. (2012) the bodies with thin covers are considered; 
in Nazarov (2005) asymptotic methods are used for the analysis 
of the elastic bodies with thin rods). Papers Niemi et al. (2010) 
and Savula et al. (2000) are devoted to the numerical solution 
of the Girkmann problem. The discussion on the problems 
of thermoelasticity the reader may find in Sulym (2007). 

In this article, we consider a model for the description of the 
stress-strain state for the 3D body with thin inclusion. The main 
part of the body is modelled using the linear elasticity theory. The 
thin part is modelled using the Timoshenko theory for shells. In 
order to numerically solve this problem, we propose an iterative 
domain decomposition algorithm which connects solutions in both 
parts using coupling conditions. We prove the convergence of the 
proposed algorithm and the existence and uniqueness of the 
solution of the corresponding Steklov-Poincare interface equation. 

The application of domain decomposition method allows us to 
decouple problems in both parts and solve the problems inde-
pendently in each part. As a result, it is possible to compute the 
stress-strain state accurately even for small shell thicknesses 
without having problems with stability issues of the coupled prob-
lem.  

2. PROBLEM STATEMENT 

Let us consider a problem of a stress-strain state of an elastic 
body Ω1 with the inclusion in Ω2 (Fig. 1). 

 
Fig. 1. Body with inclusion 

Let us describe the stress-strain state of the body in Ω1 in rec-

tangular coordinate system 𝑥1, 𝑥2,𝑥3 using the theory of linear 

elasticity. Let us denote by Σ = (σ𝑖𝑗)
𝑖,𝑗=1

3
 the Cauchy stress 

tensor. The components of Σ are found from the relationships 

𝜎𝑖𝑗 =
1

2
𝐸1 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
), 𝑖, 𝑗 = 1,2,3, 

where: 𝐸1 is the Young’s modulus of the body in Ω1; u(x) =

(𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥)) is the displacement vector with 𝑢𝑖 being 

the displacements along the directions of 𝑥𝑖, 𝑖 = 1,2,3. 

 Equilibrium equations for the body in Ω1 have the form: 

𝜕𝜎11

𝜕𝑥1
+

𝜕𝜎12

𝜕𝑥2
+

𝜕𝜎13

𝜕𝑥3
= 𝑓1, 

𝜕𝜎21

𝜕𝑥1
+

𝜕𝜎22

𝜕𝑥2
+

𝜕𝜎23

𝜕𝑥3
= 𝑓2,            (1) 

𝜕𝜎31

𝜕𝑥1
+

𝜕𝜎32

𝜕𝑥2
+

𝜕𝜎33

𝜕𝑥3
= 𝑓3, 

where: x ∈ Ω1, f = (𝑓1, 𝑓2, 𝑓3) is the vector of volume forces. 
In the following we assume that no volume forces act on the 

body in Ω1. 

Let us denote by n = (𝑛1, 𝑛2, 𝑛3) outer normal vector and 

by τ1 = (𝜏1
1, 𝜏1

2, 𝜏1
3), τ2 = (𝜏2

1, 𝜏2
2, 𝜏2

3) corresponding tan-
gent vectors. 
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Equations (1) are supplemented by the boundary conditions 
of one of the following types. 

Kinematic (Dirichlet) boundary conditions are of the form: 

𝑢𝑛 = 𝑢𝑛
0 , 𝑢𝜏1

= 𝑢𝜏1
0 , 𝑢𝜏2

= 𝑢𝜏2
0 , x ∈ 𝛤1,          (2) 

where: 𝛤1 is the outer boundary of Ω1; 𝑢𝑛, 𝑢𝜏1
 and 𝑢𝜏2

 are the 

components of the displacement vector in the coordinate system 

n, τ1, τ2; 𝑢𝑛
0 , 𝑢𝜏1

0  and 𝑢𝜏2
0  are the prescribed displacements 

on 𝛤1. 
Static (Neumann) boundary conditions have the form: 

𝜎𝑛𝑛 = 𝜎𝑛𝑛
0 , 𝜎𝑛𝜏1

= 𝜎𝑛𝜏1
0 , 𝜎𝑛𝜏2

= 𝜎𝑛𝜏2
0 , x ∈ 𝛤1,         (3) 

where: 𝜎𝑛𝑛, 𝜎𝑛𝜏1
 and 𝜎𝑛𝜏2

 are the components of the stress 

tensor in the coordinate system; n, τ1, τ2; 𝜎𝑛𝑛
0 , 𝜎𝑛𝜏1

0  and 𝜎𝑛𝜏2
0  

are the prescribed stresses on 𝛤1.  
 It is possible to consider other types of boundary conditions, 

for example mixed boundary conditions, that combine boundary 
conditions (2) and (3). 

For the description of the stress-strain state of the inclusion 

Ω2 we use the equations of Timoshenko shell theory in the curvi-

linear coordinate system (𝜉1, 𝜉2, 𝜉3) that hold on the median 

surface Ω2
∗ , where: Ω2 = {(𝜉1, 𝜉2, 𝜉3): 𝜉1

𝑏 ≤ 𝜉1 ≤ 𝜉1
𝑒 , 𝜉2

𝑏 ≤

𝜉2 ≤ 𝜉2
𝑒 , −

ℎ

2
≤ 𝜉3 ≤

ℎ

2
},  ℎ is the thickness of the inclusion 

in Ω2.  

By Ω2
∗  we denote the median surface of Ω2 (the projection 

of Ω2 on the surface for which 𝜉3 = 0). 
The equations of Timoshenko shell theory are of the form 

(Pelekh, 1978): 

1

𝐴1𝐴2

𝜕(𝐴2𝑇11)

𝜕𝜉1

−
1

𝐴1𝐴2

𝜕𝐴2

𝜕𝜉1

𝑇22 +
1

𝐴1
2𝐴2

𝜕(𝐴1
2𝑇12)

𝜕𝜉2

+ 

+𝑘1𝑇13 +
1

𝐴1𝐴2

𝜕 (
𝐴1

𝑟1
𝑀11)

𝜕𝜉2

+
𝑘2

𝐴1𝐴2

𝜕𝐴1

𝜕𝜉2

𝑀12 =

= −(𝑝1
+ + 𝑝1

−), 

−
1

𝐴1𝐴2

𝜕𝐴1

𝜕𝜉2

𝑇11 +
1

𝐴1𝐴2

𝜕(𝐴1𝑇22)

𝜕𝜉2

+
1

𝐴1𝐴2
2

𝜕(𝐴2
2𝑇12)

𝜕𝜉1

+ 

+𝑘2𝑇23 +
1

𝐴1𝐴2

𝜕 (
𝐴2

𝑟2
𝑀22)

𝜕𝜉2

+
𝑘1

𝐴1𝐴2

𝜕𝐴2

𝜕𝜉1

𝑀12 =

= −(𝑝2
+ + 𝑝2

−), 

−𝑘1𝑇11 − 𝑘2𝑇22 +
1

𝐴1𝐴2

𝜕(𝐴2𝑇13)

𝜕𝜉1

+
1

𝐴1𝐴2

𝜕(𝐴1𝑇23)

𝜕𝜉2

=

= −(𝑝3
+ − 𝑝3

−), 

−𝑇13 +
1

𝐴1𝐴2

𝜕(𝐴2𝑀11)

𝜕𝜉1

−
1

𝐴1𝐴2

𝜕𝐴2

𝜕𝜉1

𝑀22 + 

+
1

𝐴1
2𝐴2

𝜕(𝐴1
2𝑀12)

𝜕𝜉2

= −
ℎ

2
(𝑝1

+ − 𝑝1
−), 

−𝑇23 −
1

𝐴1𝐴2

𝜕𝐴1

𝜕𝜉2

𝑀11 +
1

𝐴1𝐴2

𝜕(𝐴1𝑀22)

𝜕𝜉2

+ 

+
1

𝐴1𝐴2
2

𝜕(𝐴2
2𝑀12)

𝜕𝜉1

= −
ℎ

2
(𝑝2

+ − 𝑝2
−), 

where: 𝑇11, 𝑇12, 𝑇22, 𝑇13, 𝑇23, 𝑀11, 𝑀12, 𝑀22 are the forces and 
momenta in the shell; 𝐴1 = 𝐴1(𝜉1, 𝜉2), 𝐴2 = 𝐴2(𝜉1, 𝜉2), 𝑘1 =
𝑘1(𝜉1, 𝜉2), 𝑘2 = 𝑘2(𝜉1, 𝜉2) correspond to Lame parameters 

and median surface curvature parameters; 𝑟1 =
1

𝑘1
, 𝑟2 =

1

𝑘2
; 

(𝜉1, 𝜉2) ∈ Ω2
∗ ; 𝑝1

+, 𝑝1
−, 𝑝2

+, 𝑝2
−, 𝑝3

+, 𝑝3
− are given functions; 

it holds: 

𝑇𝛼𝛼 =
𝐸2ℎ

(1−𝜗2
2)

(𝜀𝛼𝛼 + 𝜗2𝜀𝛽𝛽);  𝑇12 =
𝐸2ℎ

2(1+𝜗2)
𝜀12 

𝑇𝛼3 = 𝑘′𝐺′ℎ𝜀𝛼3;  

𝑀𝛼𝛼 =
𝐸2ℎ3

12(1−𝜗2
2)

(𝜒𝛼𝛼 + 𝜗2𝜒𝛽𝛽); 𝑀12 =
𝐸2ℎ3

12(1+𝜗2)
𝜒12 

where: 𝛼, 𝛽 = 1,2, 𝛼 ≠ 𝛽; 𝑘′, 𝐺′ are constants that character-
ize transversely isotropic material; 𝐸2 is the Young’s modulus 

of the shell, 𝜗2 is the Poisson’s ratio. 

The strains 𝜀11, 𝜀22, 𝜀12, 𝜀13, 𝜀23, 𝜒11, 𝜒22, 𝜒12 are ob-
tained from the relationships: 

𝜀𝛼𝛼 =
1

𝐴𝛼

𝜕v𝛼

𝜕𝜉𝛼
+

1

𝐴𝛼𝐴𝛽
v𝛽

𝜕A𝛼

𝜕𝜉𝛽
+ 𝑘𝛼𝑤, 

2𝜀𝛼𝛽 =
𝐴𝛼

𝐴𝛽

𝜕
v𝛼
𝐴𝛼

𝜕𝜉𝛽
+

𝐴𝛽

𝐴𝛼

𝜕
v𝛽

𝐴𝛽

𝜕𝜉𝛼
;  𝜀𝛼3 = −𝑘𝛼v𝛼 +

1

𝐴𝛼

𝜕𝑤

𝜕𝜉𝛼
+ 𝛾𝛼 

𝜒𝛼𝛼 =
1

𝐴𝛼

𝜕γ𝛼

𝜕𝜉𝛼

+
1

𝐴𝛼𝐴𝛽

γ𝛽

𝜕A𝛼

𝜕𝜉𝛽

 

2𝜒𝛼𝛽 =
𝑘𝛼

𝐴𝛽

𝜕v𝛼

𝜕𝜉𝛽

−
𝑘𝛽

𝐴𝛼𝐴𝛽

v𝛼

𝜕𝐴𝛼

𝜕𝜉𝛽

+
𝑘𝛽

𝐴𝛼

𝜕v𝛽

𝜕𝜉𝛼

− 

−
𝑘𝛼

𝐴𝛼𝐴𝛽

v𝛽

𝜕𝐴𝛽

𝜕𝜉𝛼

+
𝐴𝛼

𝐴𝛽

𝜕
γ𝛼

𝐴𝛼

𝜕𝜉𝛽

+
𝐴𝛽

𝐴𝛼

𝜕
γ𝛽

𝐴𝛽

𝜕𝜉𝛼

 

where: 𝛼, 𝛽 = 1,2, 𝛼 ≠ 𝛽; v1 = v1(𝜉1, 𝜉2), v2 = v2(𝜉1, 𝜉2), 
𝑤 = 𝑤(𝜉1, 𝜉2), γ1 = γ1(𝜉1, 𝜉2), γ2 = γ2(𝜉1, 𝜉2) are the 
displacements and angles of revolution in the shell; 

𝑝𝑖
+ = (1 + 𝑘1

ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑖3

+, 

𝑝𝑖
− = (1 − 𝑘1

ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑖3

−, 𝑖 = 1,2,3. 

Here 𝜎𝑖3
+, 𝜎𝑖3

−, 𝑖 = 1,2,3 are the components of the stress 

tensor on the top (𝜉3 =
ℎ

2
) and bottom (𝜉3 = −

ℎ

2
) surfaces of the 

shell. It is known that in the case of isotropic bodies we have  

𝑘′ =
5

6
, 𝐺′ =

𝐸2

2(1+𝜗2)
. 

On the outer edge of the thin part we impose boundary condi-

tions either on the displacements v1, v2, 𝑤 and angles γ1, γ2 
or on the forces 𝑇11, 𝑇22, 𝑇13, 𝑇23 and momenta 𝑀11, 𝑀22 in the 
shell (depending if the corresponding parts of the boundary are 
subjected to load or free). At the outer surface of the shell we 
prescribe to 𝜎𝑖3

+ and 𝜎𝑖3
−, 𝑖 = 1,2,3 some given stresses. 

The operator form of the equations of Timoshenko shell theory 
is: 

Ly = g,               (4) 

with:  

g = 𝐴1𝐴2(𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5)𝑇 

𝑔1 = 𝑝1
+ + 𝑝1

−; 𝑔2 = 𝑝2
+ + 𝑝2

−; 𝑔3 = 𝑝3
+ − 𝑝3

−; 

𝑔4 =
ℎ

2
(𝑝1

+ − 𝑝1
−); 𝑔5 =

ℎ

2
(𝑝2

+ − 𝑝2
−) 

y = (v1, v2, 𝑤, γ1, γ2)𝑇, Ly = (𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5)𝑇 

𝑙1 = −
𝜕(𝐴2𝑇11)

𝜕𝜉1

+
𝜕𝐴2

𝜕𝜉1

𝑇22 −
1

𝐴1

𝜕(𝐴1
2𝑇12)

𝜕𝜉2

− 

−𝐴1𝐴2𝑘1𝑇13 −
𝜕 (

𝐴1

𝑟1
𝑀11)

𝜕𝜉2

− 𝑘2

𝜕𝐴1

𝜕𝜉2

𝑀12 
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𝑙2 =
𝜕𝐴1

𝜕𝜉2

𝑇11 −
𝜕(𝐴1𝑇22)

𝜕𝜉2

−
1

𝐴2

𝜕(𝐴2
2𝑇12)

𝜕𝜉1

− 

−𝐴1𝐴2𝑘2𝑇23 −
𝜕 (

𝐴2

𝑟2
𝑀22)

𝜕𝜉2

− 𝑘1

𝜕𝐴2

𝜕𝜉1

𝑀12 

𝑙3 = 𝐴1𝐴2𝑘1𝑇11 + 𝐴1𝐴2𝑘2𝑇22 −
𝜕(𝐴2𝑇13)

𝜕𝜉1

−
𝜕(𝐴1𝑇23)

𝜕𝜉2

 

𝑙4 = 𝐴1𝐴2𝑇13 −
𝜕(𝐴2𝑀11)

𝜕𝜉1

+
𝜕𝐴2

𝜕𝜉1

𝑀22 −
1

𝐴1

𝜕(𝐴1
2𝑀12)

𝜕𝜉2

 

𝑙5 = 𝐴1𝐴2𝑇23 +
𝜕𝐴1

𝜕𝜉2

𝑀11 −
𝜕(𝐴1𝑀22)

𝜕𝜉2

−
1

𝐴2

𝜕(𝐴2
2𝑀12)

𝜕𝜉1

 

Let us write down the weak formulation of the Timoshenko 
shell theory problem. Without loss of generality we assume ho-
mogeneous boundary conditions. Let us define the following 
function spaces: 𝑉 = {𝑣 ∈ 𝐻1(Ω2

∗ ): 𝑣 = 0, ξ = (𝜉1, 𝜉2, 𝜉3) ∈
𝛤2𝐷}, 𝑉1 = 𝑉5, where 𝛤2𝐷 is the part of the outer boundary of Ω2 
on which the kinematic boundary condition is prescribed. 

The weak formulation of the problem (4) has the form: 

find y ∈ 𝑉1, such that: 

𝑎(y, v) = 𝑔(v),  ∀v ∈ 𝑉1,            (5) 

where: 𝑎(y, v) = (Ly, v), 𝑔(v) = (g, v).   
Lemma. Assume that for the problem (4) there exist positive 

constants  𝑟10, 𝑟20, 𝐴10, 𝐴20  such that: 
1. |𝑟1| ≥ 𝑟10 > 0; |𝑟2| ≥ 𝑟20 > 0; 

2. |𝐴1| ≥ 𝐴10 > 0; |𝐴2| ≥ 𝐴20 > 0 

almost everywhere in Ω2
∗ . 

Then the bilinear form 𝑎(y, v) for the problem (5) of Timo-
shenko shell theory is continuous. 
Proof. Firstly, we remark that from the assumption 1) it follows 
that |𝑘1| ≤ 𝑘10 < ∞, |𝑘2| ≤ 𝑘20 < ∞. Moreover, the assump-
tions of the lemma do not restrict the class of the problems or the 
algorithm that can be used for the numerical solution of this prob-
lem. Indeed, for the points, for which the assumptions do not hold, 
the system becomes singular and can no longer be used for the 
adequate description of the physical process that is being mod-
eled. 

The continuity of the bilinear form follows from the fact, that all 
the coefficients in the system (4) are bounded by modulus almost 
everywhere, and that the system (4) itself is linear. 

The proof also uses the obvious inequality: 

𝑎𝑏 ≤
𝑎2+𝑏2

2
 for 𝑎, 𝑏 ∈ 𝑅. 

In order to couple the models in both parts, adequate bounda-

ry conditions need to be specified. Let us denote by Ω2𝑖𝑛 part of 

the inclusion that lies inside the body Ω1 and by Ω2𝑖𝑛
∗  part of the 

median surface Ω2
∗  which is the projection of Ω2𝑖𝑛 on the surface 

𝜉3 = 0. 

Let 𝛤𝐼  be a boundary, common to both Ω1 and Ω2. Let us di-
vide 𝛤𝐼  into the following parts: 

𝛤𝐼1
= {ξ = (𝜉1, 𝜉2, 𝜉3): (𝜉1, 𝜉2) ∈  Ω2𝑖𝑛

∗ ;  𝜉3 = −
ℎ

2
} 

𝛤𝐼2
= {

ξ = (𝜉1, 𝜉2, 𝜉3): (𝜉1, 𝜉2) ∈  Ω2𝑖𝑛
∗ ; 

𝜉1 = 𝜉1
𝑏;  −

ℎ

2
≤ 𝜉3 ≤

ℎ

2

} 

𝛤𝐼3
= {

ξ = (𝜉1, 𝜉2, 𝜉3): (𝜉1, 𝜉2) ∈  Ω2𝑖𝑛
∗ ;  

𝜉2 = 𝜉2
𝑏;  −

ℎ

2
≤ 𝜉3 ≤

ℎ

2

} 

𝛤𝐼4
= {ξ = (𝜉1, 𝜉2, 𝜉3): (𝜉1, 𝜉2) ∈  Ω2𝑖𝑛

∗ ;  𝜉3 =
ℎ

2
} 

 
Fig. 2. Cross-section of the body in Ω by the plane 𝑥1 = const. 

Fig. 2 shows the cross-section of the body in Ω by the plane 

𝑥1 = const and the connection between rectangular 𝑥1, 𝑥2,𝑥3 

and curvilinear 𝜉1, 𝜉2, 𝜉3 coordinate systems. 

On each part of 𝛤𝐼  the following coupling conditions are pre-
scribed (Pelekh, 1978): 

 on 𝛤𝐼1
 (inner part of bottom surface of Ω2): 

𝑢𝑛 = 𝑤, 𝑢𝜏1
= −v1 +

ℎ

2
𝛾1, 𝑢𝜏2

= −v2 +
ℎ

2
𝛾2, 

𝜎𝑛𝑛 = −𝜎33
− , 𝜎𝑛𝜏1

= −𝜎13
− , 𝜎𝑛𝜏2

= −𝜎23
− ;          (6) 

 on 𝛤𝐼2
 (inner edge of Ω2): 

𝑢𝜏1
= 𝑤, 𝑢𝜏2

= −v2 − 𝜉3𝛾2, 𝑢𝑛 = v1 + 𝜉3𝛾1, 

∫ 𝜎𝑛𝑛𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑇11, ∫ 𝜎𝑛𝜏1
𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑇13, ∫ 𝜎𝑛𝜏2
𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑇12,  

∫ 𝜎𝑛𝑛𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑀11,  ∫ 𝜎𝑛𝜏2
𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑀12;         (7) 

 on 𝛤𝐼3
 (inner edge of Ω2): 

𝑢𝜏2
= 𝑤, 𝑢𝜏1

= −v1 − 𝜉3𝛾1, 𝑢𝑛 = v2 + 𝜉3𝛾2, 

∫ 𝜎𝑛𝑛𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑇22, ∫ 𝜎𝑛𝜏2
𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑇23, ∫ 𝜎𝑛𝜏1
𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑇12,  

∫ 𝜎𝑛𝑛𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑀22,  ∫ 𝜎𝑛𝜏1
𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

= 𝑀12;         (8) 

 on 𝛤𝐼4
 (inner part of top surface surface of Ω2): 

𝑢𝑛 = −𝑤, 𝑢𝜏1
= v1 +

ℎ

2
𝛾1, 𝑢𝜏2

= v2 +
ℎ

2
𝛾2, 

𝜎𝑛𝑛 = −𝜎33
+ , 𝜎𝑛𝜏1

= 𝜎13
+ , 𝜎𝑛𝜏2

= 𝜎23
+ .          (9) 

3. DOMAIN DECOMPOSITION ALGORITHM 

For the numerical solution of the model domain decomposi-
tion algorithm can be used. 

The approximate solutions in both domains are connected us-
ing Dirichlet-Neumann scheme (Quarteroni and Valli, 1999). Do-
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main decomposition algorithm has the following form: 

1. set an initial guess λ0 for the unknown displacements on the 
interface 𝛤𝐼 , set 𝜀 > 0; 

2. for 𝑘 = 0,1, … solve the boundary value problem in Ω1 with 

the displacements equal to λk to obtain the approximation for 
the forces and momenta in Ω2 using (6)-(9); 

3. solve the corresponding problem in Ω2 to find the displace-

ments 𝑢𝑛
𝑘, 𝑢𝜏1

𝑘 , 𝑢𝜏2
𝑘  on 𝛤𝐼 ; 

4. update the displacements λk on 𝛤𝐼 : 

 on 𝛤𝐼1
:  

𝜆11
𝑘+1 = (1 − 𝜃)𝜆11

𝑘 + 𝜃𝑢𝑛
𝑘, 𝜆12

𝑘+1 = (1 − 𝜃)𝜆12
𝑘 + 𝜃𝑢𝜏1

𝑘 , 

𝜆13
𝑘+1 = (1 − 𝜃)𝜆13

𝑘 + 𝜃𝑢𝜏2
𝑘 ; 

 on 𝛤𝐼2
:  

𝜆21
𝑘+1 = (1 − 𝜃)𝜆21

𝑘 + 𝜃v1
𝑘, 𝜆22

𝑘+1 = (1 − 𝜃)𝜆22
𝑘 + 𝜃v2

𝑘, 

𝜆23
𝑘+1 = (1 − 𝜃)𝜆23

𝑘 + 𝜃𝑤𝑘 , 𝜆24
𝑘+1 = (1 − 𝜃)𝜆24

𝑘 + 𝜃𝛾1
𝑘, 

𝜆25
𝑘+1 = (1 − 𝜃)𝜆25

𝑘 + 𝜃𝛾2
𝑘; 

 on 𝛤𝐼3
:  

𝜆31
𝑘+1 = (1 − 𝜃)𝜆31

𝑘 + 𝜃v2
𝑘, 𝜆32

𝑘+1 = (1 − 𝜃)𝜆32
𝑘 + 𝜃v1

𝑘, 

𝜆33
𝑘+1 = (1 − 𝜃)𝜆33

𝑘 + 𝜃𝑤𝑘 , 𝜆34
𝑘+1 = (1 − 𝜃)𝜆34

𝑘 + 𝜃𝛾2
𝑘, 

𝜆35
𝑘+1 = (1 − 𝜃)𝜆35

𝑘 + 𝜃𝛾1
𝑘; 

 on 𝛤𝐼4
:  

𝜆41
𝑘+1 = (1 − 𝜃)𝜆41

𝑘 + 𝜃𝑢𝑛
𝑘,  

𝜆42
𝑘+1 = (1 − 𝜃)𝜆42

𝑘 + 𝜃𝑢𝜏1
𝑘 , 

𝜆43
𝑘+1 = (1 − 𝜃)𝜆43

𝑘 + 𝜃𝑢𝜏2
𝑘 , 

where 𝜃 > 0 is a relaxation parameter; 

5. if ‖λk+1 − λk‖ ≥ 𝜀, then go to step 2, otherwise the algo-

rithm ends. 
In the following we assume that the variational problems cor-

responding to the domains Ω1, Ω2 and Ω have unique solutions 
(Hsiao and Wendland, 2008; Vynnytska and Savula, 2012; Dyyak 
and Savula, 1997). 

Let us prove the convergence of the domain decomposition 
algorithm and the existence and uniqueness of the solution of the 
corresponding Steklov-Poincare equation. 

For this purpose let us introduce on the common boundary 
of both domains the function φ ∈ Λ, with: 

 Λ = {φ = (𝜑1, φ2, φ3, φ4)}, 

φ1 = (𝜑11, 𝜑12, 𝜑13), 𝜑1𝑖 ∈ 𝐻1(𝛤𝐼1
), 𝑖 = 1,2,3; 

φ2 = (𝜑21, 𝜑22, 𝜑23, 𝜑24, 𝜑25),   

𝜑2𝑖 = 𝜑2𝑖(𝜉2) ∈ 𝐻
1
2(𝛤𝐼2

), 𝑖 = 1,2,3,4,5; 

φ3 = (𝜑31, 𝜑32, 𝜑33, 𝜑34, 𝜑35),   

𝜑3𝑖 = 𝜑3𝑖(𝜉1) ∈ 𝐻
1
2(𝛤𝐼3

), 𝑖 = 1,2,3,4,5; 

φ4 = (𝜑41, 𝜑42, 𝜑43), 𝜑4𝑖 ∈ 𝐻1(𝛤𝐼4
), 𝑖 = 1,2,3. 

We remark, that the choice of the space Λ is motivated by the 
specifics of the model and is based on the regularity of the corre-

sponding functions on each part of the interface 𝛤𝐼 .  
The connection between the functions 𝜑𝑖𝑗  and the displace-

ments on the interface is the following: 

 on 𝛤𝐼1
: 

 𝜑11 = 𝑢𝑛, 𝜑12 = 𝑢𝜏1
, 𝜑13 = 𝑢𝜏2

;   

 on 𝛤𝐼2
: 

 𝜑21 = v1, 𝜑22 = v2, 𝜑23 = 𝑤, 𝜑24 = 𝛾1, 𝜑25 = 𝛾2; 

 on 𝛤𝐼3
: 

 𝜑31 = v2, 𝜑32 = v1, 𝜑33 = 𝑤, 𝜑34 = 𝛾2, 𝜑35 = 𝛾1; 

 on 𝛤𝐼4
: 

 𝜑41 = 𝑢𝑛, 𝜑42 = 𝑢𝜏1
, 𝜑43 = 𝑢𝜏2

. 

Let S be a Steklov-Poincare operator for our problem and 

S𝑖 , 𝑖 = 1,2 be local Steklov-Poincare operators corresponding to 

the domains Ω𝑖 . Steklov-Poincare operator for the boundary-
value problem is an operator that transforms boundary conditions 
of one type into boundary conditions of another type. In our case, 
Steklov-Poincare operator transforms the displacements on the 
boundary into loads on the boundary. 

Let us multiply interface conditions (6) by 𝐴1𝐴2 (1 −

−𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
); (7) and (8) – by 

1

ℎ
; (9) – by 𝐴1𝐴2 (1 +

+𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
). 

The Steklov-Poincare operator can be written in the form: 

{Sφ, ψ}𝛤𝐼
= {S1φ, ψ}𝛤𝐼

+ {S2φ, ψ}𝛤𝐼
, where: 

{S1φ, ψ}𝛤𝐼
=  

= 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑛𝑛(φ), 𝜓11〉𝛤𝐼1

+

+ 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑛𝜏1

(φ), 𝜓12〉𝛤𝐼1
+

+ 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑛𝜏2

(φ), 𝜓13〉𝛤𝐼1
+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑛𝑛(φ), 𝜓41〉𝛤𝐼4

+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑛𝜏1

(φ), 𝜓42〉𝛤𝐼4
+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑛𝜏2

(φ), 𝜓43〉𝛤𝐼4
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝑛(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓21〉𝛤𝐼2
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏2

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓22〉𝛤𝐼2
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏1

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓23〉𝛤𝐼2
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝑛(φ)𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓24〉𝛤𝐼2
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏2

(φ)𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓25〉𝛤𝐼2
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝑛(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓31〉𝛤𝐼3
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏1

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓32〉𝛤𝐼3
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏2

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓33〉𝛤𝐼3
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝑛(φ)𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓34〉𝛤𝐼3
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏1

(φ)𝜉3𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝜓35〉𝛤𝐼3
, 
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{S2φ, ψ}𝛤𝐼
=  

= 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎33

− , 𝜓11〉𝛤𝐼1
+

+ 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎13

− , 𝜓12〉𝛤𝐼1
+

+ 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎23

− , 𝜓13〉𝛤𝐼1
+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎33

+ , 𝜓41〉𝛤𝐼4
+

+ 〈𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎13

+ , 𝜓42〉𝛤𝐼4
+ 〈𝐴1𝐴2 (1 +

+𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎23

+ , 𝜓43〉𝛤𝐼4
+ 〈

1

ℎ
𝑇11, 𝜓21〉𝛤𝐼2

+

+ 〈
1

ℎ
𝑇12, 𝜓22〉𝛤𝐼2

+ 〈
1

ℎ
𝑇13, 𝜓23〉𝛤𝐼2

+ 〈
1

ℎ
𝑀11, 𝜓24〉𝛤𝐼2

+

+ 〈
1

ℎ
𝑀12, 𝜓25〉𝛤𝐼2

+ 〈
1

ℎ
𝑇22, 𝜓31〉𝛤𝐼3

+ 〈
1

ℎ
𝑇12, 𝜓32〉𝛤𝐼3

+

+ 〈
1

ℎ
𝑇23, 𝜓33〉𝛤𝐼3

+ 〈
1

ℎ
𝑀22, 𝜓34〉𝛤𝐼3

+ 〈
1

ℎ
𝑀12, 𝜓35〉𝛤𝐼3

  

with 〈𝑢, 𝑣〉𝛤𝐼
 being a bilinear form: 

〈𝑢, 𝑣〉𝛤𝐼
= ∫ 𝑢𝑣𝑑𝛤𝐼𝛤𝐼

, ∀𝑣 ∈ 𝐻1/2(𝛤𝐼), ∀𝑢 ∈ (𝐻
1

2(𝛤𝐼))

∗

. 

Let Q, Q1, Q2 be preconditioners of the domain decomposi-
tion algorithm for the Dirichlet-Neumann scheme (Quarteroni and 

Valli, 1999), where: Q = Q1 + Q2, {Q1φ, ψ}𝛤𝐼
= {S1φ, ψ}𝛤𝐼

, 

{Q2φ, ψ}𝛤𝐼
= {S2φ, ψ}𝛤𝐼

. 

In the case of Dirichlet-Neumann scheme the preconditioners 

Q, Q1 and Q2 coincide with Stelkov-Poincare operators S, S1 and  

S2 respectively. 
Let us investigate the properties of the Steklov-Poincare op-

erators S, S1, S2. 

The linearity and symmetry of S2 follows directly from the lin-
earity of the corresponding operator in Ω2

∗ , median surface of Ω2. 

Theorem. Operator S2 is continuous and positive–definite on Λ. 

Proof. Let us rewrite operator S2 in the form: 

{S2φ, ψ}𝛤𝐼
=  

= ∫ 𝐴1𝐴2 ((1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎33

+ − (1 − 𝑘1
ℎ

2
) (1 −

Ω2
∗

−𝑘2
ℎ

2
) 𝜎33

− ) �̃�𝑑Ω2
∗ + ∫ 𝐴1𝐴2 ((1 + 𝑘1

ℎ

2
) (1 +

Ω2
∗

+𝑘2
ℎ

2
) 𝜎13

+ + (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎13

− ) ṽ1𝑑Ω2
∗ +

+ ∫ 𝐴1𝐴2
ℎ

2
((1 + 𝑘1

ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎13

+ − (1 − 𝑘1
ℎ

2
) (1 −

Ω2
∗

−𝑘2
ℎ

2
) 𝜎13

− ) γ̃1𝑑Ω2
∗ + ∫ 𝐴1𝐴2 ((1 + 𝑘1

ℎ

2
) (1 +

Ω2
∗

+𝑘2
ℎ

2
) 𝜎23

+ + (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎23

− ) ṽ2𝑑Ω2
∗ +

+ ∫ 𝐴1𝐴2
ℎ

2
((1 + 𝑘1

ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎23

+ − (1 − 𝑘1
ℎ

2
) (1 −

Ω2
∗

−𝑘2
ℎ

2
) 𝜎23

− ) γ̃2𝑑Ω2
∗ + 〈

1

ℎ
𝑇11, ṽ1〉𝛤𝐼2

+ 〈
1

ℎ
𝑇12, ṽ2〉𝛤𝐼2

+

+ 〈
1

ℎ
𝑇13, �̃�〉𝛤𝐼2

+ 〈
1

ℎ
𝑀11, γ̃1〉𝛤𝐼2

+ 〈
1

ℎ
𝑀12, γ̃2〉𝛤𝐼2

+

+ 〈
1

ℎ
𝑇22, ṽ2〉𝛤𝐼3

+ 〈
1

ℎ
𝑇12, ṽ1〉𝛤𝐼3

+ 〈
1

ℎ
𝑇23, �̃�〉𝛤𝐼3

+

+ 〈
1

ℎ
𝑀22, γ̃2〉𝛤𝐼3

+ 〈
1

ℎ
𝑀12, γ̃1〉𝛤𝐼3

. 

Let us substitute the corresponding left-hand sides from the 
Timoshenko shell theory model equations (4). As a result, we can 
prove the continuity and coercitivity of the local Steklov-Poincare 

operator 𝑆2 taking into account properties of the operator (4). It is 
known, that the operator (4) is coercive (Vynnytska and Savula, 
2008). 

Therefore, we obtain: 

{S2φ, φ}𝛤𝐼
≥ 𝑐2 ∫ ((

𝜕v1

𝜕𝜉1
)

2

+ (
𝜕v2

𝜕𝜉1
)

2

+ (
𝜕𝑤

𝜕𝜉1
)

2

+ (
𝜕γ1

𝜕𝜉1
)

2

+
Ω2

∗

+ (
𝜕γ2

𝜕𝜉1
)

2

+ (
𝜕v1

𝜕𝜉2
)

2

+ (
𝜕v2

𝜕𝜉2
)

2

+ (
𝜕𝑤

𝜕𝜉2
)

2

+ (
𝜕γ1

𝜕𝜉2
)

2

+ (
𝜕γ2

𝜕𝜉2
)

2

+

+v1
2 + v2

2 + 𝑤2 + γ1
2 + γ2

2) 𝑑Ω2
∗ , 𝑐 ≠ 0.      (10) 

From (10) it follows that: 

{S2φ, φ}𝛤𝐼
≥ c1

2 ∫ ((−
𝜕v1

𝜕𝜉1
+

ℎ

2

𝜕γ1

𝜕𝜉1
)

2

+ (−
𝜕v2

𝜕𝜉1
+

Ω2
∗

+
ℎ

2

𝜕γ2

𝜕𝜉1
)

2

+ (−
𝜕v1

𝜕𝜉2
+

ℎ

2

𝜕γ1

𝜕𝜉2
)

2

+ (−
𝜕v2

𝜕𝜉2
+

ℎ

2

𝜕γ2

𝜕𝜉2
)

2

+

+ (
𝜕𝑤

𝜕𝜉1
)

2

+ (
𝜕𝑤

𝜕𝜉2
)

2

+ (−v1 +
ℎ

2
γ1)

2

+ (−v2 +
ℎ

2
γ2)

2

+

+𝑤2) 𝑑Ω2
∗ + c2

2‖φ2‖
𝐻

1
2(𝛤𝐼2)

2 + c3
2‖φ3‖

𝐻
1
2(𝛤𝐼3)

2 +

+c4
2 ∫ ((

𝜕v1

𝜕𝜉1
+

ℎ

2

𝜕γ1

𝜕𝜉1
)

2

+ (
𝜕v2

𝜕𝜉1
+

ℎ

2

𝜕γ2

𝜕𝜉1
)

2

+ (
𝜕v1

𝜕𝜉2
+

Ω2
∗

+
ℎ

2

𝜕γ1

𝜕𝜉2
)

2

+ (
𝜕v2

𝜕𝜉2
+

ℎ

2

𝜕γ2

𝜕𝜉2
)

2

+ (
𝜕𝑤

𝜕𝜉1
)

2

+ (
𝜕𝑤

𝜕𝜉2
)

2

+

+ (v1 +
ℎ

2
γ1)

2

+ (v2 +
ℎ

2
γ2)

2

+ 𝑤2) 𝑑Ω2
∗ , 

𝑐𝑖 > 0, 𝑖 = 1, 2, 3, 4. 

Therefore, the operator S2 is coercive on Λ. 

Let us prove the continuity of S2. The continuity of S2 follows 

from the continuity of the operator for the problem (4) in Ω2
∗ . 

Using the continuity of the operator for the problem (4), we 
get: 

{S2φ, ψ}𝛤𝐼
≤ 𝐶2 (∫ ((

𝜕v1

𝜕𝜉1
)

2

+ (
𝜕v2

𝜕𝜉1
)

2

+ (
𝜕𝑤

𝜕𝜉1
)

2

+
Ω2

∗

+ (
𝜕γ1

𝜕𝜉1
)

2

+ (
𝜕γ2

𝜕𝜉1
)

2

+ (
𝜕v1

𝜕𝜉2
)

2

+ (
𝜕v2

𝜕𝜉2
)

2

+ (
𝜕𝑤

𝜕𝜉2
)

2

+ (
𝜕γ1

𝜕𝜉2
)

2

+

+ (
𝜕γ2

𝜕𝜉2
)

2

+ v1
2 + v2

2 + 𝑤2 + γ1
2 + γ2

2) 𝑑Ω2
∗ )

1/2

×  

× (∫ ((
𝜕ṽ1

𝜕𝜉1
)

2

+ (
𝜕ṽ2

𝜕𝜉1
)

2

+ (
𝜕�̃�

𝜕𝜉1
)

2

+ (
𝜕γ̃1

𝜕𝜉1
)

2

+ (
𝜕γ̃2

𝜕𝜉1
)

2

+
Ω2

∗

+ (
𝜕ṽ1

𝜕𝜉2
)

2

+ (
𝜕ṽ2

𝜕𝜉2
)

2

+ (
𝜕�̃�

𝜕𝜉2
)

2

+ (
𝜕γ̃1

𝜕𝜉2
)

2

+ (
𝜕γ̃2

𝜕𝜉2
)

2

+ ṽ1
2 +

+ṽ2
2 + �̃�2 + γ̃1

2 + γ̃2
2) 𝑑Ω2

∗ )
1/2

, 𝐶 > 0. 

As a result, S2 is continuous. 
Let us consider now the local Steklov-Poincare operator S1 

and rewrite it in the form: 

{S1φ, ψ}𝛤𝐼
=  

= 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑛𝑛(φ), 𝑢𝑛〉𝛤𝐼1

+

+ 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑛𝜏1

(φ), 𝑢𝜏1
〉𝛤𝐼1

+

+ 〈−𝐴1𝐴2 (1 − 𝑘1
ℎ

2
) (1 − 𝑘2

ℎ

2
) 𝜎𝑛𝜏2

(φ), 𝑢𝜏2
〉𝛤𝐼1

+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑛𝑛(φ), 𝑢𝑛〉𝛤𝐼4

+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑛𝜏1

(φ), 𝑢𝜏1
〉𝛤𝐼4

+

+ 〈−𝐴1𝐴2 (1 + 𝑘1
ℎ

2
) (1 + 𝑘2

ℎ

2
) 𝜎𝑛𝜏2

(φ), 𝑢𝜏2
〉𝛤𝐼4

+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝑛(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝑢𝑛〉𝛤𝐼2
+

+ 〈
1

ℎ
∫ 𝜎𝑛𝜏2

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝑢𝜏2
〉𝛤𝐼2

+
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+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏1

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝑢𝜏1
〉𝛤𝐼2

+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝑛(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝑢𝑛〉𝛤𝐼3
+

+ 〈−
1

ℎ
∫ 𝜎𝑛𝜏2

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝑢𝜏2
〉𝛤𝐼3

+

+ 〈
1

ℎ
∫ 𝜎𝑛𝜏1

(φ)𝑑𝜉3

ℎ

2

−
ℎ

2

, 𝑢𝜏1
〉𝛤𝐼3

. 

Since the Steklov−Poincare operator for the problem of linear 

elasticity theory is linear, continuous and coercive on (𝐻
1

2(𝛤𝐼))
3

 

(Hsiao and Wendland, 2008), and using the continuous and com-

pact embedding 𝐻1(𝐷) ⊂⊂ 𝐻
1

2(𝐷) for a strong Lipschitz do-

main 𝐷 (Hsiao and Wendland, 2008), we get that the operator S1 
is linear, continuous and positive on Λ (assuming that the corre-
sponding tensions are prescribed as boundary conditions on each 

part of the interface 𝛤𝐼). 
It is obvious that the Steklov-Poincare operator S is therefore 

linear, continuous and coercive. 

As a result, the preconditioner operators Q, Q1 and Q2 are al-
so linear and continuous, and the operators Q and Q2 are coer-

cive. Moreover, operator Q2 is symmetric. 
By Lax-Milgram lemma, the corresponding Steklov-Poincare 

equation has unique solution. 
Let us state the theorem about the convergence of domain 

decomposition algorithm (Niemi et al., 2010). 
Theorem: (the convergence of domain decomposition algorithm). 

Let: 

 operator Q2 be continuous and coercive on a Hilbert space 𝑋; 

 operator Q1 be continuous on 𝑋; 

 operator Q2 be symmetric and operator Q be coercive on 𝑋. 

Then for arbitrary λ0 ∈ 𝑋 iterations: 

λk+1 = λk + 𝜃Q2
−1(G − Qλk) 

converge in 𝑋 to the solution of the equation: 

Qλ = G 

for arbitrary 𝜃 satisfying 0 < 𝜃 < 𝜃𝑚𝑎𝑥 . 
Therefore, we have formulated and proven the following  
Theorem: Let: 

 the Steklov-Poincare operator corresponding to the problem 
of linear elasticity (1) with corresponding boundary conditions 
be continuous, symmetric and coercive on the corresponding 
trace spaces defined in Hsiao and Wendland (2008); 

 the assumptions of Lemma  hold; 

 𝐴1, 𝐴2, 𝑘1, 𝑘2 ∈ 𝐿2(Ω2
∗ ). 

 Then the iterative Dirichlet-Neumann scheme for the problem 
(1)-(4), (6)-(9) with the Dirichlet boundary conditions imposed 
on the outer edge of the thin part is convergent for some re-

laxation parameter 𝜃 where 0 < 𝜃 < 𝜃𝑚𝑎𝑥 .  
 

 
Proof: Follows from the theorem about the convergence of do-
main decomposition algorithms (Dirichlet-Neumann scheme) 
(Quarteroni and Valli, 1999). 

4. CONCLUSIONS 

We propose a domain decomposition algorithm for the compu-
tation of the stress-strain state of the body with thin inclusion. 
Based on the fact, that the corresponding problems in both parts 
can be solved separately, one can efficiently solve them preserv-
ing the structure and properties of the resulting matrices in both 
parts. Since the inclusion is modeled using Timoshenko shell 
theory, the dimension of the problem in the thin part is decreased. 

We prove that the corresponding Steklov-Poncare interface 
equation is well-posed and that the proposed algorithm converges 
for the appropriately chosen relaxation parameter, which gives the 
theoretical background for implementation of the proposed algo-
rithm.  
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