Conventional methods used to determine pneumonia pathogens are characterized by low sensitivity and long turnaround times. Introducing new tests with better parameters in patients at higher risk of infections is highly anticipated. The results of the conventional quantitative culture method (CM) in determining the bacterial etiology of pneumonia were compared with the results of the Pneumonia plus Panel test (PNP; BioFire® Diagnostics, USA) in 79 samples of bronchoalveolar lavage (BAL). Materials were collected from 79 patients with suspected pneumonia treated in an oncologic hospital due to solid tumors. Only 16/79 BAL samples (20.3%) were true positive (TP) for bacterial etiology in CM vs. 27/79 samples (34.2%) true positive in the PNP test. The total agreement between methods of interpreting the result (positive or negative) was 84.8%. The most prevalent pathogens in both methods were Staphylococcus aureus, followed by Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The PNP test identified several respiratory pathogens that were not grown in culture. The semiquantitative value reported by the PNP test was higher than that reported by culture. The PNP test vs. combined test (PNP test and CM methods) demonstrated positive predictive value (PPV) and negative predictive value (NPV) values of 100.0% and 98.1%, and the sensitivity and specificity were 96.4% and 100.0%. The PNP test is a good tool for determining the etiology of bacterial pneumonia and may support the care of an oncologic patient. However, further large-sample studies are needed to research in strictly defined groups of oncologic patients.
Non-steroidal anti-inflammatory drugs (NSAIDs) commonly used in clinical practice may cause gastrointestinal injuries and influence the gut microbiota. This study investigated the effects of various NSAIDs and some analgesics on the viability of Lactobacillaceae strains (including probiotic strains) in vitro. It was found that diclofenac, ibuprofen, ketoprofen, dexketoprofen, flurbiprofen, and acetylsalicylic acid inhibited the growth of lactobacilli at a concentration of 0.05−3.2 mg/ml. These MICs of NSAIDs are well above therapeutic plasma concentrations achieved in humans, indicating that the tested drugs should not inhibit the growth of lactobacilli in the human digestive tract.
The entomopathogenic fungus Beauveria majiangensis strain MJ1015, recently isolated from white grubs on a blueberry farm in Guizhou, China, could be used as a biocontrol agent. As a first step toward determining the effect of different solid culture media, temperature, and pH on colony growth rate and sporulation, we evaluated the optimum solid medium for mycelial growth and conidia production on a commercial scale. Subsequently, we also used single-factor analysis and response surface optimization to optimize the composition of the solid culture medium. On potato dextrose agar (PDA) medium, MJ1015 grew fastest and produced the highest spore yield at 29°C and pH 5. The best solid medium for the growth and sporulation of strain MJ1015 comprised 64.70 g/l of rice, 13.00 g/l of wheat, 0.30 g/l of NaNO3, 0.36 g/l of K2HPO4 · 3H2O, and 1.00 g/l of CaCO3. Rice, NaNO3, and K2HPO4 · 3H2O were the main influencing factors. The predicted value of cultured spores using the optimal medium was 4.56 x 1010 conidia/l. The validation test results showed that the average growth rate of strain MJ1015 on the optimal medium was 85% and 96% faster than that on Sabouraud dextrose agar with yeast extracts medium (SDAY) and PDA, respectively. Sporulation was 43.90 times and 9.65 times of that produced on SDAY and PDA, respectively. Our findings provide a theoretical basis for the commercial production of B. majiangensis to control white grubs.
Enteroaggregative Escherichia coli (EAEC) strains have been linked to several outbreaks of severe diarrhea around the world, and this bacterium is now commonly resistant to antibiotics. As part of the pathophysiology of EAEC, the characteristic pattern of adherence looks like stacked bricks on the intestinal epithelium. This phenotype depends on an aggregative adhesion plasmid (pAA), which codes for a regulatory protein named AggR. The AggR protein is a master regulator that transcriptionally actives the main virulence genes in this E. coli pathotype, such as those that encode the aggregative adhesion fimbriae, dispersin and its secretion apparatus, Aar regulatory protein, and type VI secretion system. Several reports have shown that AggR positively affects most EAEC virulence genes, functioning as a classic transcriptional activator in the promoter region of these genes, interacting with the RNA polymerase. This minireview article integrates the information about virulence determinants of EAEC controlled by the AggR regulator.
This study aimed to evaluate the accuracy of detecting drug-resistant Mycobacterium tuberculosis complex (MTBC)-specific DNA in sputum specimens from 48 patients diagnosed with pulmonary tuberculosis. The presence of MTBC DNA in the specimens was validated using the GeneXpert MTB/RIF system and compared with a specific PCR assay targeting the IS6110 and the mtp40 gene sequence fragments. Additionally, the results obtained by multiplex PCR assays to detect the most frequently encountered rifampin, isoniazid, and ethambutol resistance-conferring mutations were matched with those obtained by GeneXpert and phenotypic culture-based drug susceptibility tests. Of the 48 sputum samples, 25 were positive for MTBC using the GeneXpert MTB/RIF test. Nevertheless, the IS6110 and mtp40 single-step PCR revealed the IS6110 in 27 of the 48 sputum samples, while the mtp40 gene fragment was found in only 17 of them. Furthermore, multiplex PCR assays detected drug-resistant conferring mutations in 21 (77.8%) of the 27 samples with confirmed MTBC DNA, 10 of which contained single drug-resistant conferring mutations towards ethambutol and two towards rifampin, and the remaining nine contained double-resistant mutations for ethambutol and rifampin. In contrast, only five sputum specimens (18.5%) contained drug-resistant MTBC isolates, and two contained mono-drug-resistant MTBC species toward ethambutol and rifampin, respectively, and the remaining three were designated as multi-drug resistant toward both drugs using GeneXpert and phenotypic culture-based drug susceptibility tests. Such discrepancies in the results emphasize the need to develop novel molecular tests that associate with phenotypic non-DNA-based assays to improve the detection of drug-resistant isolates in clinical specimens in future studies.
The Clostridium perfringens bacteria are used to assess water quality as an indicator parameter. If detected, it can confirm the occurrence of past fecal contamination. Tests determining C. perfringens in water samples are usually performed by membrane filtration where filters are incubated on selective media under anaerobic conditions. Available media include mCP and TSC. The aim of this study was to compare the relative recovery of C. perfringens (including spores) from surface water samples and to determine the performance characteristics of the membrane filtration method using both media. The results showed that, although the procedure using the mCP medium was more sensitive and specific, higher recoveries were obtained in the tests based on the TSC medium.
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Conventional methods used to determine pneumonia pathogens are characterized by low sensitivity and long turnaround times. Introducing new tests with better parameters in patients at higher risk of infections is highly anticipated. The results of the conventional quantitative culture method (CM) in determining the bacterial etiology of pneumonia were compared with the results of the Pneumonia plus Panel test (PNP; BioFire® Diagnostics, USA) in 79 samples of bronchoalveolar lavage (BAL). Materials were collected from 79 patients with suspected pneumonia treated in an oncologic hospital due to solid tumors. Only 16/79 BAL samples (20.3%) were true positive (TP) for bacterial etiology in CM vs. 27/79 samples (34.2%) true positive in the PNP test. The total agreement between methods of interpreting the result (positive or negative) was 84.8%. The most prevalent pathogens in both methods were Staphylococcus aureus, followed by Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The PNP test identified several respiratory pathogens that were not grown in culture. The semiquantitative value reported by the PNP test was higher than that reported by culture. The PNP test vs. combined test (PNP test and CM methods) demonstrated positive predictive value (PPV) and negative predictive value (NPV) values of 100.0% and 98.1%, and the sensitivity and specificity were 96.4% and 100.0%. The PNP test is a good tool for determining the etiology of bacterial pneumonia and may support the care of an oncologic patient. However, further large-sample studies are needed to research in strictly defined groups of oncologic patients.
Non-steroidal anti-inflammatory drugs (NSAIDs) commonly used in clinical practice may cause gastrointestinal injuries and influence the gut microbiota. This study investigated the effects of various NSAIDs and some analgesics on the viability of Lactobacillaceae strains (including probiotic strains) in vitro. It was found that diclofenac, ibuprofen, ketoprofen, dexketoprofen, flurbiprofen, and acetylsalicylic acid inhibited the growth of lactobacilli at a concentration of 0.05−3.2 mg/ml. These MICs of NSAIDs are well above therapeutic plasma concentrations achieved in humans, indicating that the tested drugs should not inhibit the growth of lactobacilli in the human digestive tract.
The entomopathogenic fungus Beauveria majiangensis strain MJ1015, recently isolated from white grubs on a blueberry farm in Guizhou, China, could be used as a biocontrol agent. As a first step toward determining the effect of different solid culture media, temperature, and pH on colony growth rate and sporulation, we evaluated the optimum solid medium for mycelial growth and conidia production on a commercial scale. Subsequently, we also used single-factor analysis and response surface optimization to optimize the composition of the solid culture medium. On potato dextrose agar (PDA) medium, MJ1015 grew fastest and produced the highest spore yield at 29°C and pH 5. The best solid medium for the growth and sporulation of strain MJ1015 comprised 64.70 g/l of rice, 13.00 g/l of wheat, 0.30 g/l of NaNO3, 0.36 g/l of K2HPO4 · 3H2O, and 1.00 g/l of CaCO3. Rice, NaNO3, and K2HPO4 · 3H2O were the main influencing factors. The predicted value of cultured spores using the optimal medium was 4.56 x 1010 conidia/l. The validation test results showed that the average growth rate of strain MJ1015 on the optimal medium was 85% and 96% faster than that on Sabouraud dextrose agar with yeast extracts medium (SDAY) and PDA, respectively. Sporulation was 43.90 times and 9.65 times of that produced on SDAY and PDA, respectively. Our findings provide a theoretical basis for the commercial production of B. majiangensis to control white grubs.
Enteroaggregative Escherichia coli (EAEC) strains have been linked to several outbreaks of severe diarrhea around the world, and this bacterium is now commonly resistant to antibiotics. As part of the pathophysiology of EAEC, the characteristic pattern of adherence looks like stacked bricks on the intestinal epithelium. This phenotype depends on an aggregative adhesion plasmid (pAA), which codes for a regulatory protein named AggR. The AggR protein is a master regulator that transcriptionally actives the main virulence genes in this E. coli pathotype, such as those that encode the aggregative adhesion fimbriae, dispersin and its secretion apparatus, Aar regulatory protein, and type VI secretion system. Several reports have shown that AggR positively affects most EAEC virulence genes, functioning as a classic transcriptional activator in the promoter region of these genes, interacting with the RNA polymerase. This minireview article integrates the information about virulence determinants of EAEC controlled by the AggR regulator.
This study aimed to evaluate the accuracy of detecting drug-resistant Mycobacterium tuberculosis complex (MTBC)-specific DNA in sputum specimens from 48 patients diagnosed with pulmonary tuberculosis. The presence of MTBC DNA in the specimens was validated using the GeneXpert MTB/RIF system and compared with a specific PCR assay targeting the IS6110 and the mtp40 gene sequence fragments. Additionally, the results obtained by multiplex PCR assays to detect the most frequently encountered rifampin, isoniazid, and ethambutol resistance-conferring mutations were matched with those obtained by GeneXpert and phenotypic culture-based drug susceptibility tests. Of the 48 sputum samples, 25 were positive for MTBC using the GeneXpert MTB/RIF test. Nevertheless, the IS6110 and mtp40 single-step PCR revealed the IS6110 in 27 of the 48 sputum samples, while the mtp40 gene fragment was found in only 17 of them. Furthermore, multiplex PCR assays detected drug-resistant conferring mutations in 21 (77.8%) of the 27 samples with confirmed MTBC DNA, 10 of which contained single drug-resistant conferring mutations towards ethambutol and two towards rifampin, and the remaining nine contained double-resistant mutations for ethambutol and rifampin. In contrast, only five sputum specimens (18.5%) contained drug-resistant MTBC isolates, and two contained mono-drug-resistant MTBC species toward ethambutol and rifampin, respectively, and the remaining three were designated as multi-drug resistant toward both drugs using GeneXpert and phenotypic culture-based drug susceptibility tests. Such discrepancies in the results emphasize the need to develop novel molecular tests that associate with phenotypic non-DNA-based assays to improve the detection of drug-resistant isolates in clinical specimens in future studies.
The Clostridium perfringens bacteria are used to assess water quality as an indicator parameter. If detected, it can confirm the occurrence of past fecal contamination. Tests determining C. perfringens in water samples are usually performed by membrane filtration where filters are incubated on selective media under anaerobic conditions. Available media include mCP and TSC. The aim of this study was to compare the relative recovery of C. perfringens (including spores) from surface water samples and to determine the performance characteristics of the membrane filtration method using both media. The results showed that, although the procedure using the mCP medium was more sensitive and specific, higher recoveries were obtained in the tests based on the TSC medium.
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.