[
Alouani, A., Rice, T. and Blair, W. (1992). A two-stage filter for state estimation in the presence of dynamical stochastic bias, American Control Conference, Chicago, USA, pp. 1784–1788.
]Search in Google Scholar
[
Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. and Schröder, J. (2006). Diagnosis and Fault-Tolerant Control, Vol. 2, Springer, Berlin.
]Search in Google Scholar
[
Censi, A. (2010). Kalman filtering with intermittent observations: Convergence for semi-Markov chains and an intrinsic performance measure, IEEE Transactions on Automatic Control 56(2): 376–381.10.1109/TAC.2010.2097350
]Search in Google Scholar
[
Chabir, K., Rhouma, T., Keller, J.Y. and Sauter, D. (2018). State filtering for networked control systems subject to switching disturbances, International Journal of Applied Mathematics and Computer Science 28(3): 473–482, DOI: 10.2478/amcs-2018-0036.
]Apri DOISearch in Google Scholar
[
Chang, Y. H., Hu, Q. and Tomlin, C.J. (2018). Secure estimation based Kalman filter for cyber-physical systems against sensor attacks, Automatica 95(14): 399–412.10.1016/j.automatica.2018.06.010
]Search in Google Scholar
[
Chen, J. and Patton, R.J. (1996). Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances, IEE Proceedings—Control Theory and Applications 143(1): 31–36.10.1049/ip-cta:19960059
]Search in Google Scholar
[
Dán, G. and Sandberg, H. (2010). Stealth attacks and protection schemes for state estimators in power systems, 1st IEEE International Conference on Smart Grid Communications, Gaithersburg, USA, pp. 214–219.
]Search in Google Scholar
[
Darouach, M. and Zasadzinski, M. (1997). Unbiased minimum variance estimation for systems with unknown exogenous inputs, Automatica 33(4): 717–719.10.1016/S0005-1098(96)00217-8
]Search in Google Scholar
[
Darouach, M., Zasadzinski, M. and Keller, J.Y. (1992). State estimation for discrete systems with unknown inputs using state estimation of singular systems, American Control Conference, Chicago, USA, pp. 3014–3015.
]Search in Google Scholar
[
De Sá, A.O., da Costa Carmo, L.F.R. and Machado, R.C. (2017). Covert attacks in cyber-physical control systems, IEEE Transactions on Industrial Informatics 13(4): 1641–1651.10.1109/TII.2017.2676005
]Search in Google Scholar
[
Ding, B. and Fang, H. (2018). Fault estimation and prediction for nonlinear stochastic system with intermittent observations, International Journal of Robust and Nonlinear Control 28(4): 1165–1181.10.1002/rnc.3925
]Search in Google Scholar
[
Fang, H., Shi, Y. and Yi, J. (2011). On stable simultaneous input and state estimation for discrete-time linear systems, International Journal of Adaptive Control and Signal Processing 25(8): 671–686.10.1002/acs.1230
]Search in Google Scholar
[
Fletcher, A.K., Rangan, S. and Goyal, V.K. (2004). Estimation from lossy sensor data: Jump linear modeling and Kalman filtering, 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, USA, pp. 251–258.
]Search in Google Scholar
[
Friedland, B. (1969). Treatment of bias in recursive filtering, IEEE Transactions on Automatic Control 14(4): 359–367.10.1109/TAC.1969.1099223
]Search in Google Scholar
[
Gillijns, S. and De Moor, B. (2007). Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica 43(5): 934–937.10.1016/j.automatica.2006.11.016
]Search in Google Scholar
[
Hespanha, J.P., Naghshtabrizi, P. and Xu, Y. (2007). A survey of recent results in networked control systems, Proceedings of the IEEE 95(1): 138–162.10.1109/JPROC.2006.887288
]Search in Google Scholar
[
Hmida, F.B., Khemiri, K., Ragot, J. and Gossa, M. (2010). Robust filtering for state and fault estimation of linear stochastic systems with unknown disturbance, Mathematical Problems in Engineering 2010, Article ID: 591639.10.1155/2010/591639
]Search in Google Scholar
[
Hou, M. and Patton, R.J. (1998). Optimal filtering for systems with unknown inputs, IEEE Transactions on Automatic Control 43(3): 445–449.10.1109/9.661621
]Search in Google Scholar
[
Hsieh, C.-S. and Chen, F.-C. (1999). Optimal solution of the two-stage Kalman estimator, IEEE Transactions on Automatic Control 44(1): 194–199.10.1109/9.739135
]Search in Google Scholar
[
Huang, H., Ahmed, N. and Karthik, P. (2011). On a new type of denial of service attack in wireless networks: The distributed jammer network, IEEE Transactions on Wireless Communications 10(7): 2316–2324.10.1109/TWC.2011.052311.101613
]Search in Google Scholar
[
Huang, M. and Dey, S. (2007). Stability of Kalman filtering with Markovian packet losses, Automatica 43(4): 598–607.10.1016/j.automatica.2006.10.023
]Search in Google Scholar
[
Ignagni, M. (2000). Optimal and suboptimal separate-bias Kalman estimators for a stochastic bias, IEEE Transactions on Automatic Control 45(3): 547–551.10.1109/9.847741
]Search in Google Scholar
[
Jie, S., Guoqing, Q., Yinya, L. and Andong, S. (2018). Stochastic convergence analysis of cubature Kalman filter with intermittent observations, Journal of Systems Engineering and Electronics 29(4): 823–833.10.21629/JSEE.2018.04.17
]Search in Google Scholar
[
Kailath, T., Sayed, A.H. and Hassibi, B. (2000). Linear Estimation, Prentice Hall, Englewood Cliffs.
]Search in Google Scholar
[
Kalman, R.E. (1960). A new approach to linear filtering and prediction problems, ASME Journal of Basic Engineering 82(1): 23–45.10.1115/1.3662552
]Search in Google Scholar
[
Keller, J.Y. and Darouach, M. (1997). Optimal two-stage Kalman filter in the presence of random bias, Automatica 33(9): 1745–1748.10.1016/S0005-1098(97)00088-5
]Search in Google Scholar
[
Keller, J.Y. and Sauter, D. (2013). Kalman filter for discrete-time stochastic linear systems subject to intermittent unknown inputs, IEEE Transactions on Automatic Control 58(7): 1882–1887.10.1109/TAC.2013.2264739
]Search in Google Scholar
[
Kim, K.H., Lee, J.G. and Park, C.G. (2006). Adaptive two-stage kalman filter in the presence of unknown random bias, International Journal of Adaptive Control and Signal Processing 20(7): 305–319.10.1002/acs.900
]Search in Google Scholar
[
Kitanidis, P.K. (1987). Unbiased minimum-variance linear state estimation, Automatica 23(6): 775–778.10.1016/0005-1098(87)90037-9
]Search in Google Scholar
[
Li, W., Jia, Y. and Du, J. (2015). Distributed Kalman consensus filter with intermittent observations, Journal of the Franklin Institute 352(9): 3764–3781.10.1016/j.jfranklin.2015.01.002
]Search in Google Scholar
[
Liang, J., Sankar, L. and Kosut, O. (2015). Vulnerability analysis and consequences of false data injection attack on power system state estimation, IEEE Transactions on Power Systems 31(5): 3864–3872.10.1109/TPWRS.2015.2504950
]Search in Google Scholar
[
Nosrati, K. and Shafiee, M. (2018). Kalman filtering for discrete-time linear fractional-order singular systems, IET Control Theory & Applications 12(9): 1254–1266.10.1049/iet-cta.2017.0898
]Search in Google Scholar
[
Rhouma, T., Chabir, K. and Abdelkrim, M.N. (2018). Resilient control for networked control systems subject to cyber/physical attacks, International Journal of Automation and Computing 15(3): 345–354.10.1007/s11633-017-1059-x
]Search in Google Scholar
[
Rhouma, T., Keller, J.Y., Sauter, D., Chabir, K. and Abdelkrim, M. (2015). Active GLR detector for resilient LQG controller in networked control systems, IFACPapersOnLine 48(21): 754–759.10.1016/j.ifacol.2015.09.617
]Search in Google Scholar
[
Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K. and Sastry, S.S. (2007). Foundations of control and estimation over lossy networks, Proceedings of the IEEE 95(1): 163–187.10.1109/JPROC.2006.887306
]Search in Google Scholar
[
Shi, L., Xie, L. and Murray, R.M. (2009). Kalman filtering over a packet-delaying network: A probabilistic approach, Automatica 45(9): 2134–2140.10.1016/j.automatica.2009.05.018
]Search in Google Scholar
[
Simon, D. (2006). Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, Wiley, Hoboken.10.1002/0470045345
]Search in Google Scholar
[
Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I. and Sastry, S.S. (2004). Kalman filtering with intermittent observations, IEEE Transactions on Automatic Control 49(9): 1453–1464.10.1109/TAC.2004.834121
]Search in Google Scholar
[
Sumithra, S. and Vadivel, R. (2021). An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network, International Journal of Applied Mathematics and Computer Science 31(1): 45–57, DOI: 10.34768/amcs-2021-0004.
]Apri DOISearch in Google Scholar
[
Sun, S. and Ma, J. (2014). Linear estimation for networked control systems with random transmission delays and packet dropouts, Information Sciences 269(2014): 349–365.10.1016/j.ins.2013.12.055
]Search in Google Scholar
[
Tran, T.A., Jauberthie, C., Travé-Massuyès, L. and Lu, Q.H. (2021). An interval Kalman filter enhanced by lowering the covariance matrix upper bound, International Journal of Applied Mathematics and Computer Science 31(2): 259–269, DOI: 10.34768/amcs-2021-0018.
]Apri DOISearch in Google Scholar
[
Varshney, D., Bhushan, M. and Patwardhan, S.C. (2019). State and parameter estimation using extended Kitanidis Kalman filter, Journal of Process Control 76(2019): 98–111.10.1016/j.jprocont.2018.11.007
]Search in Google Scholar
[
Wang, H., Tan, S., Zhu, Y. and Li, M. (2020). Deterministic scheduling with optimization of average transmission delays in industrial wireless sensor networks, IEEE Access 8: 18852–18862.10.1109/ACCESS.2020.2968491
]Search in Google Scholar
[
Wang, Q. and Yang, H. (2019). A survey on the recent development of securing the networked control systems, Systems Science & Control Engineering 7(1): 54–64.10.1080/21642583.2019.1566800
]Search in Google Scholar
[
Yuan, Y. and Sun, F. (2015). Data fusion-based resilient control system under DoS attacks: A game theoretic approach, International Journal of Control, Automation and Systems 13(3): 513–520.10.1007/s12555-014-0316-9
]Search in Google Scholar
[
Yuan, Y., Wang, Z. and Guo, L. (2017). Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensations: The noncooperative case, IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(11): 1885–1896.10.1109/TSMC.2017.2704278
]Search in Google Scholar
[
Zhang, D., Shi, P., Wang, Q.-G. and Yu, L. (2017). Analysis and synthesis of networked control systems: A survey of recent advances and challenges, ISA Transactions 66(1): 376–392.10.1016/j.isatra.2016.09.02627773381
]Search in Google Scholar
[
Zhang, H., Song, X. and Shi, L. (2012). Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping, IEEE Transactions on Automatic Control 57(5): 1248–1253.10.1109/TAC.2012.2191857
]Search in Google Scholar
[
Zhang, X. and Ding, F. (2020). Adaptive parameter estimation for a general dynamical system with unknown states, International Journal of Robust and Nonlinear Control 30(4): 1351–1372.10.1002/rnc.4819
]Search in Google Scholar
[
Zhu, M. and Martinez, S. (2013). On the performance analysis of resilient networked control systems under replay attacks, IEEE Transactions on Automatic Control 59(3): 804–808.10.1109/TAC.2013.2279896
]Search in Google Scholar