1. bookVolume 4 (2021): Edizione 2 (October 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2601-8799
Prima pubblicazione
30 Jan 2019
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Manufacturing, Heat Treatment and Investigation of Foam-Filled Tubes

Pubblicato online: 28 Oct 2021
Volume & Edizione: Volume 4 (2021) - Edizione 2 (October 2021)
Pagine: 93 - 96
Dettagli della rivista
License
Formato
Rivista
eISSN
2601-8799
Prima pubblicazione
30 Jan 2019
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

Composite metal foams are hybrid structures with the main advantages of high specific strength and mechanical energy absorption associated with low density. In the course of our research, we successfully manufactured functional metal foams of EN AC-44200 matrix filled with lightweight expanded clay aggregate particles (LECAPs) in EN AW-6060 alloy tubes with a diameter of 50 mm and a wall thickness of 5 mm. Manufacturing was performed by low-pressure infiltration directly into the aluminium tube. Six different types of samples were examined: metal matrix syntactic foam, in-situ metal foam, ex-situ metal foam, and their heat-treated pairs. In the compression tests, the heat treatment provided a visible improvement in the results of the ex-situ metal foams.

Keywords

[1] Orbulov I. N., Szlancsik A.: On the Mechanical Properties of Aluminum Matrix Syntactic Foams. Advanced Engineering Materials, 170098. (2018). doi.org/10.1002/adem.201700980 Search in Google Scholar

[2] Szlancsik A., Katona B., Dombóvári Z., Orbulov I. N.: On the effective Young’s modulus of metal matrix syntactic foams. Materials Science and Technology, 33. (2017) 2283–2289. doi.org/10.1080/02670836.2017.1374497 Search in Google Scholar

[3] Katona B., Orbulov I. N.: Structural damages in syntactic metal foams caused by monotone or cyclic compression. Periodica Polytechnica, 61/2. (2017) 146–152. doi.org/10.3311/PPme.10346 Search in Google Scholar

[4] Yang X., An T., Wu Z., Zou T., Song H., Sha J., He C., Zhao N.: The effect of outer tube on quasi-static compression behavior of aluminum foam-filled tubes. Composite Structures, 245:112357. (2020) doi.org/10.1016/j.compstruct.2020.112357 Search in Google Scholar

[5] Linul E., Movahedi N., Marsavina L.: The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes. Composite Structures, 180. (2017) 709–722. doi.org/10.1016/j.compstruct.2017.08.034 Search in Google Scholar

[6] Rajak D. K., Mahajan N. N., Linul E.: Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. Journal of Alloys and Compounds, 775. (2019) 675–689. doi.org/10.1016/j.jallcom.2018.10.160 Search in Google Scholar

[7] Zhang B., Wang L., Zhang J., Jiang Y., Wang W., Wu G.: Deformation and energy absorption properties of cenosphere/aluminum syntactic foam-filled circular tubes under lateral quasi-static compression. International Journal of Mechanical Sciences, 192:106126. (2021). doi.org/10.1016/j.ijmecsci.2020.106126 Search in Google Scholar

[8] Garai F., Béres G., Weltsch Z.: Development of tubes filled with aluminium foams for lightweight vehicle manufacturing. Materials Science & Engineering A, 790:139743. (2020) doi.org/10.1016/j.msea.2020.139743 Search in Google Scholar

[9] Movahedi N., Murch G. E., Belova I. V., Fiedler T.: Manufacturing and compressive properties of tube-filled metal syntactic foams. Journal of Alloys and Compounds, 822:153465. (2020). doi.org/10.1016/j.jallcom.2019.153465 Search in Google Scholar

[10] Duarte I., Vesenjak M., Krstulović-Opara L., Ren Z.: Static and dynamic axial crush performance of in-situ foam-filled tubes. Composite Structures, 124. (2015) 128–139. doi.org/10.1016/j.compstruct.2015.01.014 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo