1. bookVolume 2 (2009): Edizione 3 (September 2009)
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-9569
ISSN
1337-6853
Prima pubblicazione
19 Jun 2009
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells

Dettagli della rivista
License
Formato
Rivista
eISSN
1337-9569
ISSN
1337-6853
Prima pubblicazione
19 Jun 2009
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

Batty N, Malouf GG, Issa JP. (2009). Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett 280: 192-200.Search in Google Scholar

Blaheta RA, Cinatl J Jr. (2002). Anti-tumor mechanisms of valproate: a novel role for an old drug. Med Res Rev 22: 492-511.Search in Google Scholar

Bolden JE, Peart MJ, Johnstone RW. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769-784.Search in Google Scholar

Bort R, Gomez-Lechon MJ, Castell JV, Jover R. (2004). Role of hepatocyte nuclear factor 3 gamma in the expression of human CYP2C genes. Arch Biochem Biophys 426: 63-72.Search in Google Scholar

Brodeur GM. (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203-216.Search in Google Scholar

Cerveny L, Svecova L, Anzenbacherova E, Vrzal R, Staud F, Dvorak Z, Ulrichova J, Anzenbacher P, Pavek P. (2007). Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos 35: 1032-1041.Search in Google Scholar

Cinatl J Jr., Cinatl J, Scholz M, Driever PH, Henrich D, Kabickova H, Vogel JU, Doerr HW, Kornhuber B. (1996). Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs 7: 766-773.Search in Google Scholar

Condorelli F, Gnemmi I, Vallario A, Genazzani AA, Canonico PL. (2008). Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol 153: 657-668.Search in Google Scholar

Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34: 206-222.Search in Google Scholar

Fisher JE, Nau H, Löscher W. (1991). Alterations in the renal excretion of valproate and its metabolites after chronic treatment. Epilepsia 32: 146-150.Search in Google Scholar

Furchert SE, Lanvers-Kaminsky C, Juürgens H, Jung M, Loidl A, Frühwald MC. (2007). Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 120: 787-1794.Search in Google Scholar

Hooven LA, Mahadevan B, Keshava C, Johns C, Pereira C, Desai D, Amin S, Weston A, Baird WM. (2005). Effects of suberoylanilide hydroxamic acid and trichostatin A on induction of cytochrome P450 enzymes and benzo[a]pyrene DNA adduct formation in human cells. Bioorg Med Chem Lett 15: 1283-1287.Search in Google Scholar

Hopkins-Donaldson S, Yan P, Bourloud KB, Muhlethaler A, Bodmer JL and Gross N. (2002). Doxorubicin-induced death in neuroblastoma does not involve death receptors in S-type cells and is caspase-independent in N-type cells. Oncogene 21: 6132-6137.Search in Google Scholar

Isojärvi JI, Turkka J, Pakarinen AJ, Kotila M, Rättyä J, Myllylä VV. (2001). Thyroid function in men taking carbamazepine, oxcarbazepine, or valproate for epilepsy. Epilepsia 42: 930-934.Search in Google Scholar

Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS, Chang TK. (2006). Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci 94: 261-271.Search in Google Scholar

Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN. (2005). Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res 65: 3815-3822.Search in Google Scholar

Maris JM, Mathay KK. (1999). Molecular biology of neuroblastomas. J Clin Oncol 17: 2264-2279.Search in Google Scholar

Marks PA, Miller T, Richon VM. (2003). Histone deacetylases. Curr Opin Pharmacol 3: 344-351.Search in Google Scholar

Marks PA, Richon VM, Miller T, Kelly WK. (2004). Histone deacetylase inhibitors. Adv Cancer Res 91: 137-168.Search in Google Scholar

Michaelis M, Doerr HW, Cinatl J Jr. (2007). Valproic acid as anti-cancer drug. Curr Pharm Des 13: 3378-3393.Search in Google Scholar

Michaelis M, Suhan T, Cinatl J, Driever PH, Cinatl J Jr. (2004). Valproic acid and interferon-alpha synergistically inhibit neuroblastoma cell growth in vitro and in vivo. Int J Oncol 25: 1795-1799.Search in Google Scholar

Morgenstern BZ, Krivoshik AP, Rodriguez V and Anderson PM. (2004). Wilms' tumor and neuroblastoma. Acta Paediatr Suppl 93: 78-85.Search in Google Scholar

Myasoedova KN. (2008). New findings in studies of cytochromes P450. Biochemistry (Mosc) 73: 965-969.Search in Google Scholar

Nelson-DeGrave VL, Wickenheisser JK, Cockrell JE, Wood JR, Legro RS, Strauss JF 3rd, McAllister JM. (2004). Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology 145: 799-808.Search in Google Scholar

Poljakova J, Eckschlager T, Hrabeta J, Hrebackova J, Smutny S, Frei E, Martinek V, Kizek R, Stiborova M. (2009). The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem Pharmacol 77: 1466-1479.Search in Google Scholar

Rogiers V, Akrawi M, Vercruysse A, Phillips IR, Shephard EA. (1995). Effects of the anticonvulsant, valproate, on the expression of components of the cytochrome-P-450-mediated monooxygenase system and glutathione S-transferases. Eur J Biochem 231: 337-343.Search in Google Scholar

Rogiers V, Callaerts A, Vercruysse A, Akrawi M, Shephard E, Phillips I. (1992). Effects of valproate on xenobiotic biotransformation in rat liver. In vivo and in vitro experiments. Pharm Weekbl Sci 14: 127-131.Search in Google Scholar

Santini V, Gozzini A, Ferrari G. (2007). Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab 8: 383-393.Search in Google Scholar

Servidei T, Morosetti R, Ferlini C, Cusano G, Scambia G, Mastrangelo R, Koeffler HP. (2004). The cellular response to PPARgamma ligands is related to the phenotype of neuroblastoma cell lines. Oncol Res 14: 345-354.Search in Google Scholar

Silva MF, Aires CC, Luis PB, Ruiter JP, Ijlst L, Duran M, Wanders RJ, Tavares de Almeida I. (2008). Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A review. J Inherit Metab Dis 31: 205-216.Search in Google Scholar

Snykers S, Vanhaecke T, De Becker A, Papeleu P, Vinken M, Van Riet I, Rogiers V. (2007). Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow. BMC Dev Biol 7: 24-39.Search in Google Scholar

Van Lint C, Emiliani S, Verdin E. (1996). The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5: 245-253.Search in Google Scholar

Voigt A, Hartmann P and Zintl F. (2000). Differentiation, proliferation and adhesion of human neuroblastoma cells after treatment with retinoic acid. Cell Adhes Commun 7: 423-440.Search in Google Scholar

Wen X, Wang JS, Kivistö KT, Neuvonen PJ, Backman JT. (2001). In vitro evaluation of valproic acid as an inhibitor of human cytochrome P450 isoforms: preferential inhibition of cytochrome P450 2C9 (CYP2C9). Br J Clin Pharmacol 52: 547-553.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo