1. bookVolume 2 (2009): Edizione 3 (September 2009)
Dettagli della rivista
Prima pubblicazione
19 Jun 2009
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

Pubblicato online: 24 Sep 2009
Volume & Edizione: Volume 2 (2009) - Edizione 3 (September 2009)
Pagine: 177 - 183
Dettagli della rivista
Prima pubblicazione
19 Jun 2009
Frequenza di pubblicazione
4 volte all'anno

Alvarado NE, Buxens A, Mazón LI, Marigómez I, Soto M. (2005). Cellular biomarkers of exposure and biological effect in hepatocytes of turbot (Scophthalmus maximus) exposed to Cd, Cu and Zn and after depuration. Aquat Toxicol 74: 110-125.Search in Google Scholar

Alvarado NE, Quesada I, Hylland K, Marigomez I, Soto M. (2006). Quantitative changes in metallothionein expression in target cell-types in the gills in turbot (Scophthalamus maximus) exposed to Cd, Cu, Zn and after a depuration treatment. Aquat Toxicol 77: 64-77.Search in Google Scholar

Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS. (2006). Metallothioneins in aquatic invertebrates. Their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76: 160-202.Search in Google Scholar

Bae H, Nam SS, Park H-S, Park K. (2005). Metallothionein mRNA sequencing and induction by cadmium in gills of the crucian carp (Carassius auratus). J Health Sci 51: 284-290.Search in Google Scholar

Baer KN and Thomas P. (1990). Influence of capture stress, salinity, and reproductive status on zinc associated with metallothionein-like proteins in livers of three marine teleost species. Mar Environ Res 29: 277-287.Search in Google Scholar

Belcastro M, Marino T, Russo N, Toscano M. (2009). The role of glutathione in cadmium ion detoxification: Coordination modes and binding properties - A density functional study. J Inorg Biochem 103: 50-57.Search in Google Scholar

Berntssen MHG, Aspholm OO, Hylland K, Bonga SEW, Lundebye AK. (2001). Tissue metallothionein, apoptosis and cell proliferation responses in Atlantic salmon (Salmo salar L.) parr fed elevated dietary cadmium. Comp Bioch Phys 128: 299-310.Search in Google Scholar

Bervoets L, Blust R. (2003). Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environ Pollut 126: 9-19.Search in Google Scholar

Blahova J, Kruzikova K, Hilscherova K, Grabic R, Halirova J, Jurcikova J, Ocelka T, Svobodova Z. (2008). Biliary 1-hydroxypyrene as a biomarker of exposure to polycyclic aromatic hydrocarbons in fish. Neuroendocrinol Lett 29: 663-668.Search in Google Scholar

Bonwick GA, Fielden PR, Davies DH. (1991). Hepatic metallothionein levels in roach (Rutilus rutilus L.) continuously exposed to water-borne cadmium. Comp Biochem Physiol 99C: 119-125.Search in Google Scholar

Bouraoui Z, Banni M, Ghedira J, Clerandeau C, Guerbej H, Narbonne JF, Boussetta H. (2008). Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein accumulation on sea bream Sparus aurata. Fish Physiol Biochem 34: 201-207.Search in Google Scholar

Brouwer M, Schlenk D, Ringwood AH, Brouwer-Hoexum TM. (1992). Metal-specific induction of metallothionein isoforms in the blue crab Callinectes sapidus in response to single- and mixed-metal exposure, Arch Biochem Biophys 294: 461.10.1016/0003-9861(92)90712-6Search in Google Scholar

Cajaraville MP, Abascal I, Etxeberria M, Marigómez I. (1995). Lysosomes as cellular markers of environmental pollution: time and dose-dependent responses of the digestive lysosomal system of mussels after petroleum hydrocarbon exposure. Environ Toxicol Water Qual 10: 1-8.Search in Google Scholar

Chatterjee S, Bhattacharya S. (1984). Detoxification of industrial pollutants by the glutathione and glutathione-S-transferase system in the liver of Anabas testudineus (Bloch). Toxicol Lett 22: 187-193.Search in Google Scholar

Correia AD, Lima G, Costa MH, Livingstone DR. (2002). Studies on biomarkers of copper exposure and toxicity in the marine amphipod Gammarus locusta (crustacean). Biomarkers 7: 422-437.Search in Google Scholar

Coyle P, Philcox JC, Carey LC, Rofe AM. (2002). Metallothionein: the multipurpose protein. Cell Mol Life Sci 59: 627-647.Search in Google Scholar

Dallinger R. (1995). Mechanisms of metal incorporation into cells. In: Cajaraville MP (Ed.), Cell Biology in Environmental toxicology. University of Basque Country Press Service, Bilbao, p.133-154.Search in Google Scholar

Dallinger R, Egg M, Köck G, Hofer R. (1996). The role of metallothionein in cadmium accumulation of Arctic char (Salvelinus alpinus) from high alpine lakes. Aquat Toxicol 38: 47-66.Search in Google Scholar

De Boeck G, Ngo TT, Van Campenhout K, Blust R. (2003). Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat Toxicol 65: 413-424.Search in Google Scholar

De Smet H, De Wachter B, Lobinski R, Blust R. (2001). Dynamics of (Cd, Zn)- metallothioneins in gills, liver and kidney of common carp (Cyprinus carpio) during cadmium exposure. Aquat Toxicol 52: 269-281.Search in Google Scholar

Depledge MH. (1993). The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi MC, Leonzio C. (Eds.), Non-destructive biomarkers in vertebrates. Lewis Publishers, Boca Raton, pp.261-285.Search in Google Scholar

Eaton DL, Stacey NH, Wong KL, Klaassen CD. (1980). Dose-response effects of various metal ions on rat liver, metallothionein, glutathione, heme oxygenase and cytochrome P-450. Toxicol Appl Pharmacol 55: 393-402.Search in Google Scholar

Ferreira M, Caetano M, Costa J, Pousao-Ferreira P, Vale C, Reis-Henriques MA. (2008). Metal accumulation and oxidative stress responses in, cultured and wild, white seabream from Northwest Atlantic. Sci Total Environ 407: 638-646.Search in Google Scholar

Foulkes EC. (1993). Metallothionein and glutathione as determinants of cellular retention and extrusion of cadmium and mercury. Life Sci 52: 1611-1620.Search in Google Scholar

Fowler BA, Hildebrand CE, Kojima Y, Webb M. (1987). Nomenclature of metallothionein. In: Kagi JHR, Kojima Y. Metallothionein II. Birkhauser - Verlag, Basel, pp.19-22.10.1007/978-3-0348-6784-9_2Search in Google Scholar

Friberg L, Kjellström T, Nordberg GF. (1986). Cadmium. In: Friberg L, Nordberg GF, Vouk VB (Eds.). Handbook on the toxicology of metals, vol II. Specific metals. Elsevier, Amsterdam, p 130-184.Search in Google Scholar

Glynn AW, Olsson P-E. (1991). Cadmium turnover in minnows (Phoxinus phoxinus) pre-exposed to waterborne cadmium. Environ Toxicol Chem 10: 383-394.Search in Google Scholar

Gravato C, Teles M, Oliveira M, Santos MA. (2006). Oxidative stress, liver bio-transformation and genotoxic effect induced by copper in Anguilla anguilla L. - the influence of pre-exposure of [beta]-naphtoflavone. Chemosphere 65: 1821-30.Search in Google Scholar

Haines TA. (1981). Acid precipitation and its consequences for aquatic ecosystems. A review. Transact Am Fish Soc 110: 669-705.Search in Google Scholar

Hamer DH. (1986). Metallothionein. Annu Rev Biochem 55: 913-951.Search in Google Scholar

Hamilton SJ, Mehrle PM, Jones JR. (1987). Evaluation of metallothionein measurement as a biological indicator of stress from cadmium to brook trout. Trans Am Fish Soc 116: 551-560.Search in Google Scholar

Handy RD and Eddy FB. (1990). The interaction between the surface of rainbow trout Oncorhynchus mykiss, and water-borne metal toxicants. Funct Ecol 4: 385-392.Search in Google Scholar

Havelkova M, Blahova J, Kroupova H, Randak T, Slatinska I, Leontovycova D, Grabic R, Pospisil R, Svobodova Z. (2008). Biomarkers of contaminant exposure in Chub (Leuciscus cephalus L.) - Biomonitoring of major rivers in the Czech Republic. Sensors 8: 2589-2603.Search in Google Scholar

Hollis LM, McGeer JC, McDonald DG, Wood CM. (1999). Cadmium accumulation, gill Cd binding, acclimation and physiological effects during long term sublethal Cd exposure in rainbow trout. Aquat Toxicol 46: 101-119.Search in Google Scholar

Huang PC. (1993). Metallothionein structure/function interface. In: Metallothionein III: Biological Roles and Medical Implications (Sizuki KT, Imura N, Kimura M, Eds.), Birkhauser Verlag, Basel, p. 407-426.Search in Google Scholar

Huang Z-Y, Zhang Q, Chen J, Zhuang Z-X, Wang X-R. (2007). Bioaccumulation of metals and induction of metallothioneins in selected tissues of common carp (Cyprinus carpio L.) co-exposed to cadmium, mercury and lead. Appl Organometal Chem 21:101-107.Search in Google Scholar

Hylland K, haux C, Hogstrand C. (1992). Immunological characterization of metallothionein in marine and freshwater fish. Res Mar Org Poll Pri 39: 111-115.Search in Google Scholar

Jezierska B, Witeska M. (2001). Metal toxicity to fish. University of Podlasie, Siedlce. pp 318.Search in Google Scholar

Kägi JHR, Schäffer A. (1988). Biochemistry of metallothionein. Biochemistry 27: 8509-8515.Search in Google Scholar

Kang YJ, Clapper JA, Enger MD. (1989). Enhanced cadmium cytotoxicity in A549 cells with reduced glutathione levels is due to neither enhanced cadmium accumulation nor reduced metallothionein synthesis. Cell. Biol Toxicol 5: 249-260.Search in Google Scholar

Kito H, Tazawa T, Ose Y, Sato T, Ishikawa T. (1982a). Formation of metallothionein in fish. Comp Biochem Physiol 73: 129-134.10.1016/0306-4492(82)90179-4Search in Google Scholar

Kito H, Tazawa T, Ose Y, Sato T, Ishikawa T. (1982b). Protection of metallothionein against cadmium toxicity. Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol 73: 135-139.10.1016/0306-4492(82)90180-0Search in Google Scholar

Klassen CD, Liu J, Choundry S. (1999). Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmaco Toxicol 39: 267-294.10.1007/978-3-0348-8847-9Search in Google Scholar

Klaverkamp JF, Duncan DA. (1987). Acclimation to cadmium toxicity by white suckers: cadmium binding capacity and metal distribution in gill and liver cytosol. Environ Toxicol Chem 6: 275-289.Search in Google Scholar

Köck G, Triendl M, Hofer R. (1996). Seasonal patterns of metal accumulation in Arctic char (Salvelinus alpinus) from an oligotrophic Alpine lake related to temperature. Can J Fish Aquat Sci 53: 780-786.Search in Google Scholar

Köhler A, Deisemanmn H, Lauritzen B. (1992). Histological and cytochemical indices of toxic injury in the liver of dab (Limanda limanda). Mar Ecol Prog Ser 91: 141-153.Search in Google Scholar

Kovarova J, Kizek R, Adam V, Harustiakova D, Celechovska O, Svobodova Z. (2009). Effect of cadmium chloride on metallothionein levels in carp. Sensors 9: 4789-4803.Search in Google Scholar

Kuroshima R. (1992). Comparison of cadmium accumulation in tissues between carp (Cyprinus carpio) and red bream (Pagrus major). Nippon Suisan Gakk 58: 1237-1242.Search in Google Scholar

Kuroshima R. (1995). Hepatic metallothionein and glutathione levels in red sea bram. Comp Biochem Physiol 110C: 95-100.Search in Google Scholar

Lange A, Ausseil O, Segner H. (2002). Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp Bioch Physiol 131: 231-243.Search in Google Scholar

Lecoeur S, Videman B, Berny P. (2004). Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in Dresseina polymorpha. Environ Res 94: 184-191.Search in Google Scholar

Lowe DM, Moore MN, Clarke KR. (1981). Effects of oil on digestive cells in mussels: quantitative alterations in cellular and lysosomal structure. Aquat Toxicol 1: 213-226.Search in Google Scholar

Maracine M, Segner H. (1998). Cytotoxicity of metals in isolated fish cells: Importance of the cellular glutathione status. Compar Biochem Physiol 120A: 83-88.Search in Google Scholar

Marigomez I, Soto M, Carajaville MP, Angulo E, Giamberini L. (2002). Cellular and subcellular distribution of metals in molluscs. Microsc Res Technol 56: 358-392.Search in Google Scholar

Martín -Díaz ML, Blasco J, Sales D, Delvalls TA. (2007). Biomarkers study for sediment quality assessment in spanish ports using the crab Carcinus maenas and the clam Ruditapes phillippinarum. Environ Contam Toxicol 53: 66-76.Search in Google Scholar

Mason AZ and Jenkins KD. (1995). Metal detoxification in aquatic organisms. In: Tessier A, Turner DR. (Eds.), Metal Speciation and Bioavailability in Aquatic Ecosystems. Wiley, New York, NY. p. 478-608.Search in Google Scholar

Mathiessen P. (2000). Biological effects quality assurance in monitoring programs (BELQUALM). Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Remenbrance Avenue, Burham-on-Crouch, Essex CMO 8HA, UK, 24p.Search in Google Scholar

McCarthy JF, Shugard LR. (1990). Biological markers of environmental contamination. In: McCarthy JF, Stuart LR (Eds.). Biomarkers of Environmental Contamination. Lewis Publishers, Boca Raton, Florida, p. 3-14.Search in Google Scholar

McDonald DG, Wood CM. (1993). Branchial mechanisms of acclimation to metals in freshwater fish. In: Rankin JC, Jensen JB (Eds.), Fish Ecophysiology, Chapmann & Hall, London. p. 297-315.Search in Google Scholar

McGeer JC, Szebedinszky C, McDonald DG, Wood CM. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation. Aquat Toxicol 50: 245-256.Search in Google Scholar

McGeer JC, Nadella S, Alsop DH, Hollis L, Taylor LN, McDonald DG, Wood CM. (2007). Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 84: 190-197.Search in Google Scholar

Meister A and Anderson ME. (1983). Glutathione. Annu Rev Biochem 52: 711-760.Search in Google Scholar

Meister A. (1985). The fall and rise of cellular glutathione levels: Enzyme based approaches. Curr Top Cell Regul 26: 383-394.Search in Google Scholar

Norey CG, Brown MW, Cryer A, Kay J. (1990). A comparison of accumulation, tissue distribution and secretion of cadmium in the different species of freshwater fish. Comp Biochem Physiol 97C: 215-220.Search in Google Scholar

Olsson PE, Larsson A, Maage A. (1989). Induction of metallothionein synthesis in rainbow trout (Salmo gairdneri), during long-term exposure to waterborne cadmium. Fish Physiol Biochem 6: 221-229.Search in Google Scholar

Olsson PE, Kling P, Hogstrand C. (1998). Mechanisms of heavy metal accumulation of toxicity in fish. In: Langston WJ, Bebianno MJ (Eds.). Metal Metabolism in Aquatic Environments, Chapman and Hall, London, UK, p. 321-350.10.1007/978-1-4757-2761-6_10Search in Google Scholar

Olsvik PA, Gundersen P, Andersen RA, Zachariassen KE. (2000). Metal accumulation and metallothionein in two populations of brown trout (Salmo trutta), exposed to different natural water environments during a run-off episode. Aquat Toxicol 50: 301-316.Search in Google Scholar

Pan L and Zhang H. (2006). Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp Biochem Physiol 144: 67-75.Search in Google Scholar

Randak T, Zlabek V, Pulkrabova J, Kolarova J, Kroupova H, Siroka Z, Velisek J, Svobodova Z, Hajslova J. (2009). Effect of pollution on chub in the River Elbe, Czech Republic. Ecotoxicol Environ Saf 72: 737-746.Search in Google Scholar

Redeker ES, van Campenhout K, Bervoets L, Reijinders H, Blust R. (2006). Subcellular distribution of Cd in aquatic oligochaete Tubifex tubifex, implication for trophic availability and toxicity. Environ Pollut 148: 166-175.Search in Google Scholar

Reed DJ. (1990). Glutathione: Toxicological implications. Annu Rev Toxicol Pharmacol 30: 603-631.Search in Google Scholar

Roesjadi G. (1992). Metallothionein in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22: 81-114.Search in Google Scholar

Roesijadi G. (1996). Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol 113C: 117-123.Search in Google Scholar

Rose WL, Nisbet RM, Green PG, Norris S, Fan T, Smith EH, Cherr GN, Anderson SL. (2006). Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium-exposed larval topsmelt. Aquat Toxicol 80: 298-308.Search in Google Scholar

Santovito G, Irato P, Piccinni E, Albergoni V. (2000). Relationship between metallothionein and metal contants in red-blooded and white-blooded Antarctic teleost. Polar Biol 23: 383-391.Search in Google Scholar

Sarkar A, Ray D, Shrivastava AN, Sarker S. (2006). Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotox 15: 333-340.Search in Google Scholar

Schlenk D and Rice CD. (1998). Effect of zinc and cadmium treatment on hydrogen-peroxide induced mortality and expression of glutathione and metallothionein in a teleost hepatoma cell line. Aquat Toxicol 43: 121-129.Search in Google Scholar

Singhal RK, Anderson ME, Meister A. (1987). Glutathione, a first line defence against cadmium toxicity. FASEB 1: 220-223.Search in Google Scholar

Smirnov LP, Sukhovskaya IV, Nemova NN. (2004). Effects of environmental factors on low-molecular-weight peptides of fishes: A Review Russ J Ecol 36: 41-47.10.1007/s11184-005-0007-0Search in Google Scholar

Spry Dj, Wiener JG. (1991). Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review. Environ Pollut 71: 243-304.Search in Google Scholar

Stacey NH, Klaassen CD. (1981). Comparison of the effects of metals on cellular injury and lipid peroxidation in isolated rat hepatocytes. J Toxicol Environ Health 7: 139-147.Search in Google Scholar

Stephensen E, Sturve J, Forlin L. (2002). Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp Biochem Physiol 133: 435-442.Search in Google Scholar

Sugiyama M. (1994). Role of cellular antioxidants in metal-induced damage. Cell Biol Toxicol 10: 1-22.Search in Google Scholar

Suzuki KT, Imura N, Kimura M. (1993). Metallothionein III. Birkhäuser, Basel, p.479.Search in Google Scholar

Szebedinszky C, McGeer JC, McDonald DM, Wood CM. (2001). Effect of chronic cadmium exposure via the diet or water on internal organ-specific distribution and subsequent gill Cd uptake kinetics in juvenile rainbow trout (Oncorhyncus mykiss). Environ Toxicol Chem 20: 597-607.Search in Google Scholar

Thomas P, Wofford HW, Neff JM. (1982). Effect of cadmium on glutathione content of mullet (Mugil cephalus) tissue. In: Vernberg WB, Calabrese A, Thurberg FB, Vernberg FJ (Eds.). Physiological mechanisms of Marine Pollutant Toxicity. Academic Press, NY. p. 109-125.Search in Google Scholar

Thomas P, Wofford HW. (1993). Effect of cadmium and arochlor 1254 on lipid peroxidation, glutathione peroxidase activity, and selected antioxidants in atlantic croaker tissues. Aquat Toxicol 27: 159-178.Search in Google Scholar

Tom M and Auslander M. (2005). Transcript and protein environmental biomarkers in fish - a review. Chemosphere 59:155-162.Search in Google Scholar

Tort L, Kargacin B, Torres P, Giralt M, Hidalgo J. (1996). The effect of cadmium exposure and stress on plasma cortisol, metallothionein levels and oxidative status in rainbow trout (Oncorhynchus mykiss) liver. Comp Bioch Physiol 114C: 29-34.Search in Google Scholar

Vasak M. (1991). Metal removal and substitution in vertebrate and invertebrate metallothioneins. In: Riodan JF, Vallee BL (Eds.), Methods in enzymology metallochemistry 205: 452-457.Search in Google Scholar

Wiclung A, Runn P. (1988). Calcium effects on cadmium uptake, redistribution and elimination in minnows (Phoxinus phoxinus) acclimated to different calcium concentrations. Aquat Toxicol 13: 109-122.Search in Google Scholar

Winston DW, Di Giulio RT. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19: 137-161.Search in Google Scholar

Wögrath S, Psenner R. (1995). Seasonal, annual and long-term variability in the water chemistry of a remote high alpine lake: acid rain versus natural changes. Wat Air Soil Pollut 85: 359-364.Search in Google Scholar

Won E-J, Raissudin S, Shin K-H. (2008). Evaluation of induction of metallothionein-like proteins (MTLPs) in the polychaetes for biomonitoring of heavy metal pollution in marine sediments. Mar Pollut Bull 57: 544-551.Search in Google Scholar

Woo S, Yum S, Jung JH, Shim WJ, Lee Ch-H, Lee T-K. (2006). Heavy metal-induced differential gene expression of metalothionein in Javanese medaka, Oryzias javanicus. Mar Biotech 8: 654-662.Search in Google Scholar

Yudkovski Y, Rogowska-Wrzesinska A, Yankelevich I, Shefer E, Herut B, Tom M. (2008). Quantitative immunochemical evaluation of fish metallothionein upon exposure to cadmium. Mar Environ Res 65: 427-436.Search in Google Scholar

Zorita I, Apraiz I, Ortiz-Zarragoitia M, Orbea A, Cancio I, Soto M, Marigómez I, Cajaraville MP. (2007). Assessment of biological effects of environmental pollution along the NW Mediterranean sea using mussels as sentinel organisms. Environ Pollut 148: 236-250.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo