[
[1] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.10.1145/3133956.3134104
]Search in Google Scholar
[
[2] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl. Mac’n’cheese: Zero-knowledge proofs for arithmetic circuits with nested disjunctions. IACR Cryptol. ePrint Arch., 2020:1410, 2020.
]Search in Google Scholar
[
[3] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How to remove intractability assumptions. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 373–410. 2019.10.1145/3335741.3335758
]Search in Google Scholar
[
[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.10.1145/62212.62213
]Search in Google Scholar
[
[5] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments from bitcoin. Cryptology ePrint Archive, Report 2014/349, 2014.10.1109/SP.2014.36
]Search in Google Scholar
[
[6] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT Part I, pages 103–128, 2019.10.1007/978-3-030-17653-2_4
]Search in Google Scholar
[
[7] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In TCC 2016-B Part II, pages 31–60, 2016.10.1007/978-3-662-53644-5_2
]Search in Google Scholar
[
[8] R. Bhadauria, Z. Fang, C. Hazay, M. Venkitasubramaniam, T. Xie, and Y. Zhang. Ligero++: A new optimized sublinear iop. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 2025–2038, 2020.10.1145/3372297.3417893
]Search in Google Scholar
[
[9] A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable computation using multiple provers. IACR Cryptol. ePrint Arch., 2014:846, 2014.
]Search in Google Scholar
[
[10] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT Part II, pages 327–357, 2016.10.1007/978-3-662-49896-5_12
]Search in Google Scholar
[
[11] J. Bootle, A. Chiesa, and J. Groth. Linear-time arguments with sublinear verification from tensor codes. In Theory of Cryptography Conference, pages 19–46. Springer, 2020.10.1007/978-3-030-64378-2_2
]Search in Google Scholar
[
[12] J. Bootle, A. Chiesa, and S. Liu. Zero-knowledge succinct arguments with a linear-time prover. 2020.
]Search in Google Scholar
[
[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In IEEE SP, pages 315–334, 2018.10.1109/SP.2018.00020
]Search in Google Scholar
[
[14] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202, 2000.10.1007/s001459910006
]Search in Google Scholar
[
[15] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001.10.1109/SFCS.2001.959888
]Search in Google Scholar
[
[16] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing zksnarks with universal and updatable SRS. IACR Cryptology ePrint Archive, 2019:1047, 2019.
]Search in Google Scholar
[
[17] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure multiparty computation. In ASIACRYPT Part II, pages 466–485, 2014.10.1007/978-3-662-45608-8_25
]Search in Google Scholar
[
[18] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of aggregate statistics. In 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), pages 259–282, 2017.
]Search in Google Scholar
[
[19] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.10.1007/978-3-642-32009-5_38
]Search in Google Scholar
[
[20] Y. Desmedt. Threshold Cryptography, pages 1288–1293. 2011.10.1007/978-1-4419-5906-5_330
]Search in Google Scholar
[
[21] Y. Desmedt, G. D. Crescenzo, and M. Burmester. Multiplicative non-abelian sharing schemes and their application to threshold cryptography. In ASIACRYPT, pages 21–32, 1994.10.1007/BFb0000421
]Search in Google Scholar
[
[22] S. Dittmer, Y. Ishai, and R. Ostrovsky. Line-point zero knowledge and its applications. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.
]Search in Google Scholar
[
[23] E. Druk and Y. Ishai. Linear-time encodable codes meeting the gilbert-varshamov bound and their cryptographic applications. In Proceedings of the 5th conference on Innovations in theoretical computer science, pages 169–182, 2014.10.1145/2554797.2554815
]Search in Google Scholar
[
[24] J. Eberhardt and S. Tai. Zokrates - scalable privacy-preserving off-chain computations. In IEEE International Conference on Internet of Things (iThings), pages 1084–1091, 2018.10.1109/Cybermatics_2018.2018.00199
]Search in Google Scholar
[
[25] S. Englehardt. Privacy-preserving mozilla telemetry with prio. https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/.
]Search in Google Scholar
[
[26] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In CRYPTO, pages 186–194, 1986.10.1007/3-540-47721-7_12
]Search in Google Scholar
[
[27] O. Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.
]Search in Google Scholar
[
[28] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.10.1145/28395.28420
]Search in Google Scholar
[
[29] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages 305–326, 2016.10.1007/978-3-662-49896-5_11
]Search in Google Scholar
[
[30] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty computation. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 21–30, 2007.10.1145/1250790.1250794
]Search in Google Scholar
[
[31] M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient threshold zero-knowledge with applications to user-centric protocols. In ICITS, pages 147–166, 2012.10.1007/978-3-642-32284-6_9
]Search in Google Scholar
[
[32] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In ACM CCS, pages 830–842, 2016.10.1145/2976749.2978357
]Search in Google Scholar
[
[33] B. King. An efficient implementation of a threshold RSA signature scheme. In ACISP, pages 382–393, 2005.10.1007/11506157_32
]Search in Google Scholar
[
[34] B. Libert, S. Ramanna, and M. Yung. Functional commitment schemes: From polynomial commitments to pairingbased accumulators from simple assumptions. In 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016), 2016.
]Search in Google Scholar
[
[35] Y. Lindell. How to simulate it - A tutorial on the simulation proof technique. In Tutorials on the Foundations of Cryptography, pages 277–346. 2017.10.1007/978-3-319-57048-8_6
]Search in Google Scholar
[
[36] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North-Holland Publishing Company, 1978.
]Search in Google Scholar
[
[37] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In IEEE SP, pages 238–252. IEEE, 2013.10.1109/SP.2013.47
]Search in Google Scholar
[
[38] T. P. Pedersen. Distributed provers with applications to undeniable signatures. In EUROCRYPT, pages 221–242, 1991.10.1007/3-540-46416-6_20
]Search in Google Scholar
[
[39] T. P. Pedersen. Distributed provers and verifiable secret sharing based on the discrete logarithm problem. DAIMI Report Series, 21(388), 1992. PhD Thesis.10.7146/dpb.v21i388.6621
]Search in Google Scholar
[
[40] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE SP, pages 459–474, 2014.10.1109/SP.2014.36
]Search in Google Scholar
[
[41] B. Schoenmakers, M. Veeningen, and N. de Vreede. Trinocchio: Privacy-preserving outsourcing by distributed verifiable computation. In M. Manulis, A.-R. Sadeghi, and S. Schneider, editors, ACNS, pages 346–366, 2016.10.1007/978-3-319-39555-5_19
]Search in Google Scholar
[
[42] S. Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. Cryptology ePrint Archive, Report 2019/550, 2019. https://eprint.iacr.org/2019/550.
]Search in Google Scholar
[
[43] C. Weng, K. Yang, J. Katz, and X. Wang. Wolverine: fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1074–1091. IEEE, 2021.10.1109/SP40001.2021.00056
]Search in Google Scholar
[
[44] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. DIZK: A distributed zero knowledge proof system. IACR Cryptology ePrint Archive, 2018:691, 2018.
]Search in Google Scholar
[
[45] K. Yang, P. Sarkar, C. Weng, and X. Wang. Quicksilver: Efficient and affordable zero-knowledge proofs for circuits and polynomials over any field. IACR Cryptol. ePrint Arch., 2021:76, 2021.
]Search in Google Scholar
[
[46] J. Zhang and T. Xie. Virgo: Zero knowledge proofs system without trusted setup. 2019.
]Search in Google Scholar