1. bookVolume 124 (2014): Edizione 3 (September 2014)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-4829
Prima pubblicazione
23 Apr 2014
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
access type Accesso libero

Mechanism and Effects of Cyanobacterial Hepatotoxin Action on Human Organism

Pubblicato online: 10 Dec 2014
Volume & Edizione: Volume 124 (2014) - Edizione 3 (September 2014)
Pagine: 156 - 159
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-4829
Prima pubblicazione
23 Apr 2014
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
Abstract

Eutrophication of waters and climate warming have created in the last decades favourable conditions for cyanobacteria colonization. The presence of cyanobacteria toxins in heavily polluted lake waters and fish ponds has become a current problem. These toxins belong to cyanobacteria secondary metabolites and are active in various fields of harmfulness to animals and humans. This group includes neurotoxins, dermatotoxins and hepatotoxins having a destructive influence on liver's cells. The group of hepatotoxins comprises microcystins and nodularin. The symptoms of hepatotoxin poisoning include stomach, intestine and liver disorders, intra-liver bleeding and physiological insufficiency of this organ.

These compounds can induce apoptosis of liver cells and tumor promoters. From the above facts, it follows that hepatotox-ins can pose a very serious health problem on a global scale. This work presents the characteristic of cyanobacterial hepato-toxins, their chemical structure, properties, and mechanism of their action on human organism. The harmful influence caused by consuming products used in diet supplements, which contain microcystins was also pointed out.

Keywords

1. Briand JF, Jacquet S, Bernard C, Humbert JF. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surfaces water ecosystems. Vet Res. 2003;34:361-7.10.1051/vetres:2003019Search in Google Scholar

2. Seckbach J. Alge and cyanobacteria in extreme environments. Holandia: Springer, Dordrecht; 2007. p. 661-83.10.1007/978-1-4020-6112-7Search in Google Scholar

3. Christiansen G, Molitor C, Philmus B, Kurmayer R. Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol. 2008;25:1695-704.10.1093/molbev/msn120Search in Google Scholar

4. Mazur-Marzec H, Borowczyk-Matusiak G, Forycka K, et al. Morfologi-cal, genetic, chemical and ecophysiological characterisation of two Mi-crocystis aeruginosa isolates from the Vistula Lagoon, southern Baltic. Oceanol. 2010;52:127-56.10.5697/oc.52-1.127Search in Google Scholar

5. Rogalska-Kupiec M, Bochnia T. Toksyny syntetyzowane przez sinice. Wiad Bot. 1998;42:11-9.Search in Google Scholar

6. Codd G, Morrison LF, Metcalf JS. Cyanobacterial toxins: risk management for health protection. Toxicol. Appl Pharmacol. 2005;203:264-72.10.1016/j.taap.2004.02.016Search in Google Scholar

7. Del Campo FF, Ouahid Y. Identyfication of microcystins from three col-lectoin strains of Microcystis aeruginosa. Environ Poll. 2010;158:2906-14.10.1016/j.envpol.2010.06.018Search in Google Scholar

8. Namikoshi M, Rinehart K L, Sakai R, et al. Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga) Nostoc sp. J Org Chem. 1990;55:6135-9.10.1021/jo00312a019Search in Google Scholar

9. Humpage A. Toxin types, toxicokinetics and toxicodynamics. Adv Exp Med Biol. 2008;619:383-415.10.1007/978-0-387-75865-7_16Search in Google Scholar

10. Chorus I, Falconer IR, Salas HJ, Bartram J. Health risks caused by freshwater cyanobacteria in recreational waters. J Toxicol Environ. Health Part B. 2000;3:323-47.Search in Google Scholar

11. El-Shehawy R, Gorokhova E, Fernández-Piñas F, del Campo FF. Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments? Water Res. 2012;46:1420-9.Search in Google Scholar

12. Rinehart KL, Namikoshi M, Choi BW. Structure and Biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Physiol. 1994;6:159-76.10.1007/BF02186070Search in Google Scholar

13. Botes DP, Kruger H, Viljoen CC. Isolation and characterisation of four toxins from the blue green alga Microcystis aeruginosa. Toxicon. 1982a;20:945-54.10.1016/0041-0101(82)90097-6Search in Google Scholar

14. Eriksson JE, Toivola D, Meriluo'o JAO, et al. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphst-sses. Biochem Biophys Res Commun. 1990;173:1347-53.10.1016/S0006-291X(05)80936-2Search in Google Scholar

15. Sivonen K. Cyanobacterial toxins and toxin production. Phycol. 1996;35:12-24.10.2216/i0031-8884-35-6S-12.1Search in Google Scholar

16. Carmichael WW. Health effects of toxin-producing cyanobacteria, The Cyano Habs Hum Ecol Risk. Assessement. 2001;7:1393-407.Search in Google Scholar

17. Dawson RM. The toxicology of microcystins. Toxicon. 1998;36:953-6210.1016/S0041-0101(97)00102-5Search in Google Scholar

18. Pearson LA, Neilan BA. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water qality and public health risk. Cur Opin Biotech.2008;19:281-8.10.1016/j.copbio.2008.03.002Search in Google Scholar

19. Walker M, von Dohren H. Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev. 2006;30:530-63.10.1111/j.1574-6976.2006.00022.xSearch in Google Scholar

20. Ding W-X, Shen H-M, Ong C-N. Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environ. Health Perspec. 2000;108:605-9Search in Google Scholar

21. Toivola DM, Eriksson JE, Brautigar DL. Identification of protein phos-phatase 2A as the primary target for microcystin-LR in rat liver homoge-nates. FEBS Lett. 1994;344:175-80.10.1016/0014-5793(94)00382-3Search in Google Scholar

22. McElhiney J, Lawton LA. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharmacol. 2005;203:219-3010.1016/j.taap.2004.06.002Search in Google Scholar

23. Honkanen RE, Dukelow M, Zwiller J, et al. Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Mol Pharmacol. 1991;40:577-83Search in Google Scholar

24. McElhiney J, Lawton LA, Leifert C. Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon. 2001;39:1411-20.10.1016/S0041-0101(01)00100-3Search in Google Scholar

25. Carmitchael WW. The toksins of cyanobacteria. Sci Am. 1994;270(1):78-86.10.1038/scientificamerican0194-788284661Search in Google Scholar

26. Małkowski P, Pacholczyk P, Łągiewska B, et al. Rak wąrtobowo-komórkowy – epidemiologia i leczenie. Przegl Epidemiol. 2006;60:731-40.Search in Google Scholar

27. Falconer IR, Humpage AR. Health risk assessment of cyanobacte-rial (blue-green algal)toxins in drinking water. Int J Res Public Health. 2005;2:43-50.10.3390/ijerph2005010043381469516705800Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo