1. bookVolume 52 (2022): Edizione 4 (December 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-4608
Prima pubblicazione
26 Feb 2008
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

An Application of the Pythagorean Fuzzy Sets in the Fault Diagnosis

Pubblicato online: 07 Dec 2022
Volume & Edizione: Volume 52 (2022) - Edizione 4 (December 2022)
Pagine: 63 - 74
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-4608
Prima pubblicazione
26 Feb 2008
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Bakioglu G., Atahan A.O.: AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Appl. Soft Comput. 2021, 99, 106948. Search in Google Scholar

2. Chen S.M. and Chang C.H.: A novel similarity between Atanassov’s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition, Information Sci., 291, 96-114, 2015.10.1016/j.ins.2014.07.033 Search in Google Scholar

3. Hoang, D.T., Kang, H.J.: A motor current signal-based bearing fault diagnosis using deep learning and information fusion. IEEE Trans. Instrum. Meas. 2019, 69, 3325–3333. Search in Google Scholar

4. Hoang D.T., Tran X.T., Van, M., Kang H.J.: A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis. Sensors, 2021, 21, 244.10.3390/s21010244779592133401511 Search in Google Scholar

5. Jiao J., Zhao M., Lin J., Ding C.: Deep Coupled Dense Convolutional Network With Complementary Data for Intelligent Fault Diagnosis, IEEE Trans. Ind. Electron., 66 (12) (2019) 9858-9867. Search in Google Scholar

6. Li C., Sanchez V., Zurita G., Lozada M.C., Cabrera D.: Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time–frequency ridge enhancement. ISA Trans. 2016, 60, 274–284. Search in Google Scholar

7. Li Y.H., Olson D.L. and Qin D.: Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis. Pattern Recognition Letters, vol. 28, 278-285, 2007.10.1016/j.patrec.2006.07.009 Search in Google Scholar

8. Nguyen H.: A new knowledge-based measure for intuitionistic fuzzy sets and its application in multiple attribute group decision making, Expert. Syst. Appl., vol. 42, no. 22, pp. 8766–8774, 2015.10.1016/j.eswa.2015.07.030 Search in Google Scholar

9. Papakostas G.A., Hatzimichailidis A.G. and Kaburlasos V.G.: Distance and similarity measures between intuitionistic fuzzy sets: A comparative analysis from a pattern recognition point of view, Pattern Recognit. Lett. 34, 1609-1622, 2013.10.1016/j.patrec.2013.05.015 Search in Google Scholar

10. Peng X., Yang Y.: Some results for pythagorean Fuzzy Sets, Int. J. Intell. Syst. 30 (2015) 1133–1160. Search in Google Scholar

11. Rauber T.W., de Assis Boldt F., Varejão F.M.: Heterogeneous feature models and feature selection applied to bearing fault diagnosis. IEEE Trans. Ind. Electron. 2014, 62, 637–646. Search in Google Scholar

12. Shi L.L., Ye J.: Study on fault diagnosis of turbine using an improved cosine similarity measure of vague sets. Journal of Applied Sciences 13 (10), 1781-1786 (2013).10.3923/jas.2013.1781.1786 Search in Google Scholar

13. Xu G., Hou D., Qi H. and Bo L.: High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life. Mech. Syst. Signal. Proc. 2021, 146, 107050. Search in Google Scholar

14. Yager R.R.: Pythagorean fuzzy subsets, in: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, 2013, pp. 57–61.10.1109/IFSA-NAFIPS.2013.6608375 Search in Google Scholar

15. Ye Z., Yu J.: Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis. Mech. Syst. Signal Process. 2021, 161, 107984. Search in Google Scholar

16. Zhang H. and Yu L.: New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Inform. Sci., 245, 181-196, 2013.10.1016/j.ins.2013.04.040 Search in Google Scholar

17. Zhang R., Wang J., Zhu X., Xia M. and Yu Y.: Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision Making, Complexity, vol. 2017, Article ID 5937376, 16 pages, 2017. Search in Google Scholar

18. Zhang X., Xu Z.: Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst. 29 (12) (2014) 1061–1078. Search in Google Scholar

Articoli consigliati da Trend MD