1. bookVolume 68 (2022): Edizione 2 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Mucormycosis, a post-COVID infection: possible adjunctive herbal therapeutics for the realigning of impaired immune-metabolism in diabetic subjects

Pubblicato online: 02 Oct 2022
Volume & Edizione: Volume 68 (2022) - Edizione 2 (June 2022)
Pagine: 86 - 98
Ricevuto: 15 Nov 2021
Accettato: 28 Feb 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24:91-98. doi: https://dx.doi.org/10.1016/j.jare.2020.03.00510.1016/j.jare.2020.03.005711361032257431 Search in Google Scholar

2. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med 2020; 2(8):1069–1076. doi: https://dx.doi.org/10.1007/s42399-020-00363-410.1007/s42399-020-00363-4731462132838147 Search in Google Scholar

3. Deng F, Gao D, Ma X, Guo Y, Wang R, Jiang W, et al. Corticosteroids in diabetes patients infected with COVID-19. Ir J Med Sci 2021; 190(1):29–31. doi: https://dx.doi.org/10.1007/s11845-020-02287-310.1007/s11845-020-02287-3731511332588377 Search in Google Scholar

4. Pak J, Tucci VT, Vincent AL, Sandin RL, Greene JN. Mucormycosis in immunochallenged patients. J Emerg Trauma Shock 2008; 1(2):106. doi: https://dx.doi.org/10.4103/0974-2700.4220310.4103/0974-2700.42203270060819561989 Search in Google Scholar

5. Spellberg B. Gastrointestinal mucormycosis: An evolving disease. Gastroenterol and Hepatol 2012; 8:140-142. Search in Google Scholar

6. Camara-Lemarroy CR, González-Moreno EI, Rodríguez-Gutiérrez R, Rendón-Ramírez E, Ayala-Cortés AS, Fraga-Hernández ML, et al. Clinical features and outcome of mucormycosis. Inter-discip Perspect Infect Dis 2014; 2014. doi: https://dx.doi.org/10.1155/2014/56261010.1155/2014/562610415814025210515 Search in Google Scholar

7. Kwon-Chung KJ. Taxonomy of fungi causing mucormycosis and entomophthoramycosis (zygomycosis) and nomenclature of the disease: Molecular mycologic perspectives. Clin Infect Dis 2012; 54. doi: https://dx.doi.org/10.1093/cid/cir86410.1093/cid/cir864327623522247451 Search in Google Scholar

8. Gupta S, Goyal R, Kaore NM. Rhino-orbital-cerebral mucormycosis: battle with the deadly enemy. Indian J Otolaryngol Head Neck Surg 2020; 72(1):104–111. doi: https://dx.doi.org/10.1007/s12070-019-01774-z10.1007/s12070-019-01774-z704014132158665 Search in Google Scholar

9. Gebremariam T, Liu M, Luo G, Bruno V, Phan QT, Waring AJ, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest 2014; 124(1):237-250. doi: https://dx.doi.org/10.1172/JCI7134910.1172/JCI71349387124524355926 Search in Google Scholar

10. Jeong W, Keighley C, Wolfe R, Lee WL, Slavin MA, Kong DCM, et al. The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clin Microbiol Infect 2019; 25:26-34. doi: https://dx.doi.org/10.1016/j.cmi.2018.07.01110.1016/j.cmi.2018.07.01130036666 Search in Google Scholar

11. Skiada A, Lass-Floerl C, Klimko N, Ibrahim A, Roilides E, Petrikko G. Challenges in the diagnosis and treatment of mucormycosis. Med Mycol 2018; 53:248-257. doi: https://dx.doi.org/10.1093/mmy/myx10110.1093/mmy/myx101625153229538730 Search in Google Scholar

12. Bala K, Chander J, Handa U, Punia RS, Attri AK. A prospective study of mucormycosis in north India: Experience from a tertiary care hospital. Med Mycol 2015; 53(3):248–257. doi: https://dx.doi.org/10.1093/mmy/myu08610.1093/mmy/myu086 Search in Google Scholar

13. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin Infect Dis 2005; 41:634-653. doi: https://dx.doi.org/10.1086/43257910.1086/432579 Search in Google Scholar

14. John TM, Jacob CN, Kontoyiannis DP. When uncontrolled diabetes mellitus and severe Covid-19 converge: The perfect storm for mucormycosis. J Fungi (Basel) 2021; 7. doi: https://dx.doi.org/10.3390/jof704029810.3390/jof7040298 Search in Google Scholar

15. Sharma S, Grover M, Bhargava S, Samdani S, et al. Post coronavirus disease mucormycosis: A deadly addition to the pandemic spectrum. J Laryngol Otol 2021; 135(5):442–447. doi: https://dx.doi.org/10.1017/S002221512100099210.1017/S0022215121000992 Search in Google Scholar

16. Singh AK, Singh R, Joshi SR, Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab Syndr Clin Res Rev Elsevier 2021; 15(4):102146. doi: https://dx.doi.org/10.1016/j.dsx.2021.05.01910.1016/j.dsx.2021.05.019 Search in Google Scholar

17. Garg D, Muthu V, Sehgal IS, Ramachandran R, Kaur H, Bhalla A, et al. Coronavirus disease (Covid-19) associated mucormycosis (CAM): Case report and systematic review of literature. Mycopathologia 2021; 186(2):289–298. doi: https://dx.doi.org/10.1007/s11046-021-00528-210.1007/s11046-021-00528-2 Search in Google Scholar

18. Skiada A, Pavleas I, Drogari-Apiranthitou M. Epi- demiology and diagnosis of mucormycosis: An update. J Fungi 2020; 6:1-20. doi: https://dx.doi.org/10.3390/jof604026510.3390/jof6040265 Search in Google Scholar

19. Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am J Emerg Med Elsevier 2021; 42:264.e5-264.e8. doi: https://dx.doi.org/10.1016/j.ajem.2020.09.03210.1016/j.ajem.2020.09.032 Search in Google Scholar

20. Alanio A, Dellière S, Fodil S, Bretagne S, Mégarbane B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med 2020; 8: e48-e49. doi: https://dx.doi.org/10.1016/S2213-2600(20)30237-X10.1016/S2213-2600(20)30237-X Search in Google Scholar

21. Chong WH, Neu KP. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J Hosp Infect 2021; 113:115-129. doi: https://dx.doi.org/10.1016/j.jhin.2021.04.01210.1016/j.jhin.2021.04.012805792333891985 Search in Google Scholar

22. Buil JB, Zanten ARH van, Bentvelsen RG, Rijpstra TA, Goorhuis B, Van der Voort S, et al. Case series of four secondary mucormycosis infections in COVID-19 patients, the Netherlands, December 2020 to May 2021. Euro Surveill NLM (Medline) 2021; 26(23). doi: https://dx.doi.org/10.2807/1560-7917.ES.2021.26.23.210051010.2807/1560-7917.ES.2021.26.23.2100510819399334114540 Search in Google Scholar

23. Krishna V, Morjaria J, Jalandari R, Omar F, Kaul S. Autoptic identification of disseminated mucormycosis in a young male presenting with cerebrovascular event, multi-organ dysfunction and COVID-19 infection. IDCases 2021; 25. doi: https://dx.doi.org/10.1016/j.idcr.2021.e0117210.1016/j.idcr.2021.e01172816173434075329 Search in Google Scholar

24. Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020; 12(9). doi: https://dx.doi.org/10.7759/cureus.1072610.7759/cureus.10726759903933145132 Search in Google Scholar

25. Zurl C, Hoenigl M, Schulz E, Hatzl S, Gorkiewicz G, Krause R, et al. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically Ill COVID-19 patient with underlying hematological malignancy. J Fungi 2021; 7(2):1–4. doi: https://dx.doi.org/10.3390/jof702008810.3390/jof7020088791222333513875 Search in Google Scholar

26. Johnson AK, Ghazarian Z, Cendrowski KD, Persichino JG. Pulmonary aspergillosis and mucormycosis in a patient with COVID-19. Med Mycol Case Rep 2021; 32:64–67. doi: https://dx.doi.org/10.1016/j.mmcr.2021.03.00610.1016/j.mmcr.2021.03.006802554033842203 Search in Google Scholar

27. Sungnak W, Huang N, Bécavin C, Berg M, Network H. SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. Nat Med 2020; 26:681–687. doi: https://dx.doi.org/10.1038/s41591-020-0868-610.1038/s41591-020-0868-6863793832327758 Search in Google Scholar

28. Xu H, Zhong L, Deng J, Peng J, Hongxia D, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1):1–5. doi: https://dx.doi.org/10.1038/s41368-020-0074-x10.1038/s41368-020-0074-x703995632094336 Search in Google Scholar

29. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109(9):3812-3819. doi: https://dx.doi.org/10.1182/blood-2006-07-03597210.1182/blood-2006-07-03597217255361 Search in Google Scholar

30. Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett 2020; 225:31-32. doi: https://dx.doi.org/10.1016/j.imlet.2020.06.01310.1016/j.imlet.2020.06.013730573232569607 Search in Google Scholar

31. Kushimoto S, Akaishi S, Sato T, Nomura R, Fujita M, Kudo D, et al. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissue hypoxia/hypoperfusion in critically ill patients. Acute Med Surg 2016; 3(4):293-297. doi: https://dx.doi.org/10.1002/ams2.20710.1002/ams2.207566733529123802 Search in Google Scholar

32. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47(3):193-199. doi: https://dx.doi.org/10.1007/s00592-009-0109-410.1007/s00592-009-0109-4 Search in Google Scholar

33. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol 2020; 51:613-628. doi: https://dx.doi.org/10.1007/s10735-020-09915-310.1007/s10735-020-09915-3 Search in Google Scholar

34. Langarizadeh MA, Tavakoli MR, Abiri A, Ghasempour A, Rezaei M, Ameri A. A review on function and side effects of systemic corticosteroids used in high-grade Covid-19 to prevent cytokine storms. EXCLI J 2021; 20:339-365. doi: https://dx.doi.org/10.17179/excli2020-3196 Search in Google Scholar

35. Hoang K, Abdo T, Reinersman JM, Lu R, Higuita NIA. A case of invasive pulmonary mucormycosis resulting from short courses of corticosteroids in a well-controlled diabetic patient. Med Mycol Case Rep 2020; 29:22–24. doi: https://dx.doi.org/10.1016/j.mmcr.2020.05.00810.1016/j.mmcr.2020.05.008 Search in Google Scholar

36. Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis 2019; 19:e405-e421. doi: https://dx.doi.org/10.1016/S1473-3099(19)30312-310.1016/S1473-3099(19)30312-3 Search in Google Scholar

37. Kontoyiannis DP, Lewis RE. How I treat mucormycosis. Blood Am Soc Hematol 2011; 118(5):1216–1224. doi: https://dx.doi.org/10.1182/blood-2011-03-31643010.1182/blood-2011-03-316430329243321622653 Search in Google Scholar

38. Schmidt S, Tramsen L, Perkhofer S, Lass-Flörl C, Hanisch M, Röger F, et al. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity. Immunobiol 2013; 218(7):939–944. doi: https://dx.doi.org/10.1016/j.imbio.2012.10.01310.1016/j.imbio.2012.10.01323201314 Search in Google Scholar

39. Barratt DM, Meter K Van, Asmar P, Nolan T, Trahan C, Gracia Covarrubias L, et al. Hyperbaric oxygen as an adjunct in zygomycosis: Randomized controlled trial in a murine model. Antimicrob Agents Chemother 2001; 45(12):3601–3602. doi: https://dx.doi.org/10.1128/AAC.45.12.3601-3602.200110.1128/AAC.45.12.3601-3602.20019087711709348 Search in Google Scholar

40. Tripathi K. Essentials of Medical Pharmacology. 2013.10.5005/jp/books/12256 Search in Google Scholar

41. Mishra KK, Kaur DC, Sahu AK, Panik R, Kashyap P, Mishra SP, et al. Medicinal plants having antifungal properties, medicinal plants - use in prevention and treatment of diseases, Bassam Abdul Rasool Hassan, IntechOpen, 2020. doi: https://www.intechopen.com/chapters/70638 Search in Google Scholar

42. Batiha GES, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10. doi: https://dx.doi.org/10.3390/biom1003035210.3390/biom10030352717535032106571 Search in Google Scholar

43. Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019; 19(10): 826–832.10.2174/138955751966619011911112530659537 Search in Google Scholar

44. Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2020; 40: 151-168. doi: https://dx.doi.org/10.1002/jat.388010.1002/jat.388031389060 Search in Google Scholar

45. Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc 2020. doi: https://dx.doi.org/10.1016/j.matpr.2020.10.05510.1016/j.matpr.2020.10.055755678733078096 Search in Google Scholar

46. Fatima A, Gupta VK, Luqman S, Negi AS, Kumar JK, Shanker K, et al. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin. Phyther Res 2009; 23(8):1190–1193. doi: https://dx.doi.org/10.1002/ptr.272610.1002/ptr.272619170157 Search in Google Scholar

47. Martins N, Ferreira ICFR, Henriques M, Silva S. In vitro anti-Candida activity of Glycyrrhiza glabra L. Ind Crops Prod 2016; 83:81–85. doi: https://dx.doi.org/10.1016/j.indcrop.2015.12.02910.1016/j.indcrop.2015.12.029 Search in Google Scholar

48. Pingali U, Ali MA, Gundagani S, Nutalapati C. Evaluation of the effect of an aqueous extract of Azadirachta indica (Neem) leaves and twigs on glycemic control, endothelial dysfunction and systemic inflammation in subjects with type 2 diabetes mellitus – a randomized, double-blind, placebo-controlled. Diabetes Metab Syndr Obes Targets Ther 2020; 13:4401–4412. doi: https://dx.doi.org/10.2147/DMSO.S27437810.2147/DMSO.S274378768377333244247 Search in Google Scholar

49. Abdelhady MIS, Shaheen U, Bader A, Youns MA. A new sucrase enzyme inhibitor from Azadirachta indica. Pharmacogn Mag 2016; 12(46):293–296. doi: https://dx.doi.org/10.4103/0973-1296.18570510.4103/0973-1296.185705497194627563214 Search in Google Scholar

50. Adegbola PI, Semire B, Fadahunsi OS, Adegoke AE. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. VirusDisease 2021; 32(1):85–97. doi: https://dx.doi.org/10.1007/s13337-021-00682-710.1007/s13337-021-00682-7803601333869672 Search in Google Scholar

51. Abhinav M, Neha J, Anne G, Bharti V. Role of novel drug delivery systems in bioavailability enhancement: At A glance. Int J Drug Deliv Technol 2016; 6(1):7–26.10.25258/ijddt.v6i1.8884 Search in Google Scholar

52. Sepahvand A, Eliasy H, Mohammadi M, Safarzadeh A, Azarbaijani K, Shahsavari S, et al. A review of the most effective medicinal plants for dermatophytosis in traditional medicine. Biomed Res Ther 2018; 5(6):2378–2388. doi: https://dx.doi.org/10.15419/bmrat.v5i6.45010.15419/bmrat.v5i6.450 Search in Google Scholar

53. Kar P, Kumar V, Vellingiri B, Jaishee N, Anandraj A, Malhotra H, et al. Anisotine and amarogentin as promising inhibitory candidates against SARSCoV-2 proteins: a computational investigation. J Biomol Struct Dyn 2020; 1. doi: https://dx.doi.org/10.1080/07391102.2020.186013310.1080/07391102.2020.1860133780800233305988 Search in Google Scholar

54. Kumar A, Dubey NK, Srivastava S. Antifungal evaluation of Ocimum sanctum essential oil against fungal deterioration of raw materials of Rauvolfia serpentina during storage. Ind Crops Prod 2013; 45:30–35. doi: https://dx.doi.org/10.1016/j.indcrop.2012.12.00610.1016/j.indcrop.2012.12.006 Search in Google Scholar

55. Balakumar S, Rajan S, Thirunalasundari T, Jeeva S. Antifungal activity of Ocimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi. Asian Pac J Trop Med 2011; 4(8):654–657. doi: https://dx.doi.org/10.1016/S1995-7645(11)60166-110.1016/S1995-7645(11)60166-1 Search in Google Scholar

56. Patrick F, Mtui G, Mshandete AM, Kivaisi A. Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajor-caju. Afr J Biotechnol 2011; 10(50):10166–10177. Search in Google Scholar

57. Beatovic D, Krstic-Miloševic D, Trifunovic S, Šiljegovic J, Glamoclija J, Ristic M, et al. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec Nat Prod 2015; 9(1):62–75. Search in Google Scholar

58. Hussain AI, Anwar F, Hussain Sherazi ST, Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 2008; 108(3):986–995. doi: https://dx.doi.org/10.1016/j.foodchem.2007.12.01010.1016/j.foodchem.2007.12.010 Search in Google Scholar

59. Huang H, Qiu M, Lin J, Lei M, Ma X, Ran F, et al. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: a systematic review of recent advances. Eur J Nutr 2021. doi: https://doi.org/10.1007/s00394-020-02471-210.1007/s00394-020-02471-2 Search in Google Scholar

60. Beidokhti MN, Jäger AK. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. J Ethnopharmacol 2017; 201:26-41. doi: https://dx.doi.org/10.1016/j.jep.2017.02.03110.1016/j.jep.2017.02.031 Search in Google Scholar

61. Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res 2013; 57:1510-1528. doi: https://dx.doi.org/10.1002/mnfr.20110074110.1002/mnfr.201100741 Search in Google Scholar

62. Azeez TB, Lunghar J. Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale). In: Inflammation and Natural Products 2021; 127–146. doi: https://dx.doi.org/10.1016/b978-0-12-819218-4.00011-010.1016/B978-0-12-819218-4.00011-0 Search in Google Scholar

63. Arif T, Bhosale JD, Kumar N, Mandal TK, Bandre RS, Lavekar GS, et al. Natural products - Antifungal agents derived from plants. J Asian Nat Prod Res 2009; 11:621-638. doi: https://dx.doi.org/10.1080/1028602090294235010.1080/10286020902942350 Search in Google Scholar

64. Dhanik J, Arya N, Nand V, Jyotsna Dhanik C.A Review on Zingiber officinale.  J Pharmacogn Phytochem 2017; 6(3):174–184. Search in Google Scholar

65. Endo K, Kanno E, Oshima Y. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochem 1990; 29(3):797–799. doi: https://dx.doi.org/10.1016/0031-9422(90)80021-810.1016/0031-9422(90)80021-8 Search in Google Scholar

66. Singh G, Maurya S, Catalan C, de Lampasona MP. Studies on essential oils, part 42: Chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr J 2005; 20(1):1–6. doi: https://dx.doi.org/10.1002/ffj.137310.1002/ffj.1373 Search in Google Scholar

67. Bi X, Lim J, Henry CJ. Spices in the management of diabetes mellitus. Food Chem 2017; 217:281-293. doi: https://dx.doi.org/10.1016/j.food-chem.2016.08.111 Search in Google Scholar

68. Allahghadri T, Rasooli I, Owlia P, Nadooshan M, Ghazanfari T, Taghizadeh M, et al. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from Cumin produced in Iran. J Food Sci 2010; 75(2):54–61. doi: https://dx.doi.org/10.1111/j.1750-3841.2009.01467.x10.1111/j.1750-3841.2009.01467.x20492235 Search in Google Scholar

69. Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Bin Li H. Antibacterial and antifungal activities of spices. Int J Mol Sci 2017; 18. doi: https://dx.doi.org/10.3390/ijms1806128310.3390/ijms18061283548610528621716 Search in Google Scholar

70. Mvuemba HN, Green SE, Tsopmo A, Avis TJ. Antimicrobial efficacy of cinnamon, ginger, horseradish and nutmeg extracts against spoilage pathogens. Phytoprotection 2009; 90(2):65–70. doi: https://dx.doi.org/10.7202/044024ar10.7202/044024ar Search in Google Scholar

71. Gupta C, Garg AP, Uniyal RC, Kumari A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. African J Microbiol Res 2008; 2(9):247–251. Search in Google Scholar

72. Jalali A, Dabaghian F, Akbrialiabad H, Foroughinia F, Zarshenas MM. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res 2021; 35:1925-1938. doi: https://dx.doi.org/10.1002/ptr.693610.1002/ptr.693633159391 Search in Google Scholar

73. Abirami S, Edwin Raj B, Soundarya T, Kannan M, Sugapriya D, Al- Dayan N, et al. Exploring antifungal activities of acetone extract of selected Indian medicinal plants against human dermal fungal pathogens. Saudi J Biol Sci 2021; 28(4):2180–2187. doi: https://dx.doi.org/10.1016/j.sjbs.2021.01.04610.1016/j.sjbs.2021.01.046807191833911934 Search in Google Scholar

74. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006; 126(12):2565–2575. doi: https://dx.doi.org/10.1038/sj.jid.570034010.1038/sj.jid.570034017108903 Search in Google Scholar

75. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J Clin Biochem 2013; 28:314-328. doi: https://dx.doi.org/10.1007/s12291-013-0375-310.1007/s12291-013-0375-3378392124426232 Search in Google Scholar

76. Falowo AB, Mukumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res Int 2018; 106:317-334. doi: https://dx.doi.org/10.1016/j.foodres.2017.12.07910.1016/j.foodres.2017.12.07929579932 Search in Google Scholar

77. Lyons G, Gondwe C, Banuelos G, Mendoza C, Haug A, Christophersen O, et al. Drumstick tree (Moringa oleifera) leaves as a source of dietary selenium, sulphur and pro-vitamin A. Acta Hortic 2017; 1158:287-292. doi: https://dx.doi.org/10.17660/ActaHortic.2017.1158.3210.17660/ActaHortic.2017.1158.32 Search in Google Scholar

78. Iswari RS, Susanti R, Dafip M. Vitamin A modulation toward IL-12, IFN-γ production and macrophage activity in malaria disease. AIP Conf Proc 2016; 1744:020049. doi: https://dx.doi.org/10.1063/1.495352310.1063/1.4953523 Search in Google Scholar

79. Maggini S, Beveridge S, Sorbara PJP, Senatore G. Feeding the immune system: The role of micronutrients in restoring resistance to infections. CAB Rev Perspect Agric Vet Sci Nutr Nat Re-sour 2008; 3:1-21 https://doi.org/10.1079/PAVSNNR2008309810.1079/PAVSNNR20083098 Search in Google Scholar

80. Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017; 9. doi: https://dx.doi.org/10.3390/nu911121110.3390/nu9111211570768329099763 Search in Google Scholar

81. Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Asp Med 2017; 53:10-27. doi: https://dx.doi.org/10.1016/j.mam.2016.08.00110.1016/j.mam.2016.08.00127593095 Search in Google Scholar

82. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol 2019; 10:3160. doi: https://dx.doi.org/10.3389/fimmu.2018.0316010.3389/fimmu.2018.03160634097930697214 Search in Google Scholar

83. Padayachee B, Baijnath H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. South African J Bot 2020; 129:304–316. doi: https://dx.doi.org/10.1016/j.sajb.2019.08.02110.1016/j.sajb.2019.08.021 Search in Google Scholar

84. Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol 2009; 47(6):1109–1116. doi: https://dx.doi.org/10.1016/j.fct.2009.01.03410.1016/j.fct.2009.01.03419425184 Search in Google Scholar

85. Ganie SA, Zaffer M, Gulia SS, Yadav SS, Singh R, Ganguly S. Antifungal efficacy of Moringa oleifera Lam. Am J Phytomedicine Clin. Ther 2015; 3:028–033. Search in Google Scholar

86. Chuang PH, Lee CW, Chou JY, Murugan M, Shieh BJ, Chen HM. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 2007; 98(1):232–236. doi: https://dx.doi.org/10.1016/j.biortech.2005.11.00310.1016/j.biortech.2005.11.00316406607 Search in Google Scholar

87. Ahmadu T, Ahmad K, Ismail SI, Rashed O, Asib N, Omar D. Antifungal efficacy of moringa oleifera leaf and seed extracts against botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.). Braz J Biol 2021; 81(4):1007–1022. doi: https://dx.doi.org/10.1590/1519-6984.23317310.1590/1519-6984.23317333175006 Search in Google Scholar

88. Dahot MU. Antimicrobial activity of small protein of Moringa oleifera leaves. J Islam Acad Sci 1998; 11(1):27–32. Search in Google Scholar

89. Khanam S. Role of zinc supplementation on diabetes. Endocr Disord 2018; 2(1):10–11. Search in Google Scholar

90. Liang RY, Wu W, Huang J, Jiang SP, Lin Y. Magnesium affects the cytokine secretion of CD4+ T lymphocytes in acute asthma. J Asthma 2012; 49(10):1012–1015. doi: https://dx.doi.org/10.3109/02770903.2012.73924010.3109/02770903.2012.73924023134345 Search in Google Scholar

91. Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA Viruses. Immunity 2018; 48(4):675-687.e7. doi: https://dx.doi.org/10.1016/j.immuni.2018.03.01710.1016/j.immuni.2018.03.01729653696 Search in Google Scholar

92. Hao DC, Gu XJ, Xiao PG. Medicinal Plants: Chemistry, Biology and Omics. 2015. doi: https://dx.doi.org/10.1016/C2014-0-01090-810.1016/C2014-0-01090-8 Search in Google Scholar

93. Lachman J, Hejtmánková A, Miholová D, Kolihová D, Tluka P. Relations among alkaloids, cadmium and zinc contents in opium poppy (Papaver somniferum L.). Plant, Soil Environ 2006; 52(6):282–288. doi: https://dx.doi.org/10.17221/3442-pse10.17221/3442-PSE Search in Google Scholar

94. Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep 2010; 3(6):895-901. doi: https://dx.doi.org/10.3892/mmr.2010.37710.3892/mmr.2010.377299528321132119 Search in Google Scholar

95. More NV, Kharat AS. Antifungal and anticancer potential of Argemone mexicana L. Medicines (Basel) 2016; 3(4):28. doi: https://dx.doi.org/10.3390/medicines304002810.3390/medicines3040028545623628930138 Search in Google Scholar

96. Ismaili A, Sohrabi SM, Azadpour M, Heydari R, Rashidipour M. Evaluation of the antimicrobial activity of alkaloid extracts of four Papaver species. Herb Med J 2018; 2(4):146–152. doi: https://dx.doi.org/10.22087/hmj.v0i0.638 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo