1. bookVolume 67 (2021): Edizione 4 (December 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Cytotoxic roles of apigenin and kaempferol on staurosporine-treated mesenchymal stem cells in an in vitro culture

Pubblicato online: 02 Feb 2022
Volume & Edizione: Volume 67 (2021) - Edizione 4 (December 2021)
Pagine: 10 - 15
Ricevuto: 13 Sep 2021
Accettato: 19 Oct 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

Shashank K, Abhay P. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 162750. doi:https://dx.doi.org/110.1155/2013/162750Search in Google Scholar

Haghi G, Hatami A, Safaei A, Mehran M. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res Pharm Sci 2014; 9(1):31-37.Search in Google Scholar

Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7(1). doi:https://dx.doi.org/110.1186/s13578-017-0179-x10.1186/s13578-017-0179-x562976629034071Search in Google Scholar

Lee J-H, Zhou H J, Cho S Y, Kim Y S, Lee Y S, Jeong Ch S. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells and expression of cellular adhesion molecules. Arch Pharm Res 2007; 30(10): 1318-1327. doi:http://dx.doi.org/10.1007/BF0298027310.1007/BF0298027318038911Search in Google Scholar

Kadioglu O, Nass J, Saeed M E M, Schuler B, Efferth T. Kaempferol is an anti-inflammatory compound with activity towards NF-κB pathway proteins. Anticancer Res 2015; 35(5):2645-50.Search in Google Scholar

Fahad AR, Falaq N, Smita J, Yasir HS. Health functionality of apigenin: a review. Int J Food Prop 2017; 20:1197-1238. doi:https://dx.doi.org/110.1080/10942912.2016.120718810.1080/10942912.2016.1207188Search in Google Scholar

Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6):1305. doi:http://dx.doi.org/10.3390/ijms2006130510.3390/ijms20061305647214830875872Search in Google Scholar

DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA. Absorption of kaempferol from en-dive, a source of kaempferol-3-glucuronide, in humans. Eur J Clin Nutr 2004; 58(6):947-954. doi:http://dx.doi.org/10.1038/sj.ejcn.160191610.1038/sj.ejcn.160191615164116Search in Google Scholar

Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019; 11(10):2288. doi:http://dx.doi.org/10.3390/nu1110228810.3390/nu11102288683534731557798Search in Google Scholar

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 2018; 1(13):1-13. doi:http://dx.doi.org/10.1002/ptr.622710.1002/ptr.622730402931Search in Google Scholar

Ulanowska M, Olas B. Fitozwiązki – ważne składniki suplementów diety oraz ich wpływ na zdrowie człowieka. Kosmos. 2021; 70(1):103-114. doi:https://dx.doi.org/110.36921/kos.2021_272110.36921/kos.2021_2721Search in Google Scholar

Malsy M, Bitzinger D, Graf B, Bundscherer A. Staurosporine induces apoptosis in pancreatic carcinoma cells PaTu 8988t and Panc-1 via the intrinsic signaling pathway. Eur J Med Res 2019; 24: 5. doi:http://dx.doi.org/10.1186/s40001-019-0365-x10.1186/s40001-019-0365-x634860430686270Search in Google Scholar

McCarthy MJ, Rubin LL, Philpott KJ. Involvement of caspases in sympathetic neuron apoptosis. J Cell Sci 1997; 110(Pt 18):2165-73.10.1242/jcs.110.18.21659378766Search in Google Scholar

Koh JY, Wie MB, Gwag BJ, Sensi SL, Canzoniero LM, Demaro J et al. Staurosporine-induced neuronal apoptosis. Exp Neurol 1995; 135(2):153-9. doi:http://dx.doi.org/10.1006/exnr.1995.107410.1006/exnr.1995.10747589326Search in Google Scholar

Linares GR, Leng Y, Maric D, Chuang D-M. Over-expression of fibroblast growth factor-21 (FGF-21) protects mesenchymal stem cells against caspase-dependent apoptosis induced by oxidative stress and inflammation. Cell Biol Int 2020; 44:2163-2169. doi:http://dx.doi.org/10.1002/cbin.1140910.1002/cbin.1140932557962Search in Google Scholar

Borkowska P, Zielinska A, Paul-Samojedny M, Stojko R, Kowalski J. Evaluation of reference genes for quantitative real-time PCR in Wharton’s Jelly-derived mesenchymal stem cells after lentiviral transduction and differentiation. Mol Biol Rep 2020; 47(2):1107-1115. doi:http://dx.doi.org/10.1007/s11033-019-05207-610.1007/s11033-019-05207-631781918Search in Google Scholar

Gao H-L, Yu X-J, Hu H-B, Yang Q-W, Liu K-L, Chen Y-M et al. Apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent ROS generation and cytokines in the hypothalamic paraventricular nucleus. Cardiovascular Toxicology 2021; 21:721-736. doi:http://dx.doi.org/10.1007/s12012-021-09662-110.1007/s12012-021-09662-134076830Search in Google Scholar

Ciumărnean L, Milaciu M V, Runcan O, Vesa S C, Răchis A L, Negrean V et al. The effects of flavonoids in cardiovascular diseases. Molecules 2020; 25, 4320. doi:http://dx.doi.org/10.3390/molecules2518432010.3390/molecules25184320757102332967119Search in Google Scholar

Dourado N S, Souza C S, Almeida M M A, Silva A B, Santos B L, Silva V D A et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Front Aging Neurosci 2020; 12:119. doi:https://dx.doi.org/110.3389/fnagi.2020.0011910.3389/fnagi.2020.00119724384032499693Search in Google Scholar

Zhao L, Wang J-L, Liu R, Li X-X, Li J-F, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013; 18: 9949-9965. doi:https://dx.doi.org/110.3390/molecules1808994910.3390/molecules18089949627049723966081Search in Google Scholar

Paria H, Javad F B, Somaye V, Farnaz N Evaluation of the neuroprotective, anticonvulsant and cognition improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iranian Journal of Basic Medical Sciences 2019; 22(7): 752-758. doi:http://dx.doi.org/10.22038/ijbms.2019.33892.8064Search in Google Scholar

Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer J P E. The neuroprotective potential of flavonoids: a multiplicity of effects. 2008; 3(3-4): 115–126. doi:http://dx.doi.org/10.1007/s12263-008-0091-410.1007/s12263-008-0091-4259300618937002Search in Google Scholar

de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2021; 15;338:127535. doi:http://dx.doi.org/10.1016/j.foodchem.2020.12753510.1016/j.foodchem.2020.12753532798817Search in Google Scholar

Ahn-Jarvis J H, Parihar A, Doseff A I. Dietary flavonoids for immunoregulation and cancer: food design for targeting disease. Antioxidants 2019; 8(7): 202. doi:http://dx.doi.org/10.3390/antiox807020210.3390/antiox8070202668072931261915Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo