1. bookVolume 67 (2021): Edizione 3 (September 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Lack of salidroside impact on selected cytochromes encoding genes transcription in the liver of ethanol induced rats

Pubblicato online: 15 Nov 2021
Volume & Edizione: Volume 67 (2021) - Edizione 3 (September 2021)
Pagine: 53 - 65
Ricevuto: 30 Jul 2021
Accettato: 10 Sep 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Xuan Z, Naimi TS, Kaplan MS, Bagge CL, Few LR, Maisto S et al. Alcohol policies and suicide: A review of the literature. Alcohol Clin Exp Res. 2016; 40(10):2043-205. doi: https://dx.doi.org/10.1111/acer.1320310.1111/acer.13203 Search in Google Scholar

2. Crowley P. Long-term drug treatment of patients with alcohol dependence. Aust Prescr 2015; 38(2):41-43. doi: https://dx.doi.org/10.18773/austprescr.2015.01510.18773/austprescr.2015.015 Search in Google Scholar

3. Litten RZ, Wilford BB, Falk DE, Ryan ML, Fertig JB. Potential medications for the treatment of alcohol use disorder: An evaluation of clinical efficacy and safety. Subst Abus 2016; 37(2):286-98. doi: https://dx.doi.org/10.1080/08897077.2015.113347210.1080/08897077.2015.1133472 Search in Google Scholar

4. Kim Y, Hack LM, Ahn ES, Kim J. Practical out-patient pharmacotherapy for alcohol use disorder. Drugs Context 2018; 7:212308. doi: https://dx.doi.org/10.7573/dic.21230810.7573/dic.212308 Search in Google Scholar

5. Ehrie J, Hartwell EE, Morris PE, Mark TL, Kranzler HR. Survey of addiction specialists’ use of medications to treat alcohol use disorder. Front Psychiatry 2020; 11:47. doi: https://dx.doi.org/10.3389/fpsyt.2020.0004710.3389/fpsyt.2020.00047 Search in Google Scholar

6. Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of alcohol use disorder: A Review. JAMA 2018; 320(8):815-824. doi: https://dx.doi.org/10.1001/jama.2018.1140610.1001/jama.2018.11406 Search in Google Scholar

7. Overstreet DH, Keung WM, Rezvani AH, Massi M, Lee DY. Herbal remedies for alcoholism: promises and possible pitfalls. Alcohol Clin Exp Res 2003; 27(2):177-85. doi: https://dx.doi.org/10.1097/01.ALC.0000051022.26489.CF10.1097/01.ALC.0000051022.26489.CF Search in Google Scholar

8. Rezvani AH, Overstreet DH, Perfumi M, Massi M. Plant derivatives in the treatment of alcohol dependency. Pharmacol Biochem Behav 2003; 75(3):593-606. doi: https://dx.doi.org/10.1016/S0091-3057(03)00124-210.1016/S0091-3057(03)00124-2 Search in Google Scholar

9. Liu Q, Lawrence AJ, Liang J-H. Traditional Chinese medicine for treatment of alcoholism: from ancient to modern. Am J Chin Med 2011; 39(1):1-13. doi: https://dx.doi.org/10.1142/S0192415X1100860910.1142/S0192415X1100860921213394 Search in Google Scholar

10. Ożarowski M, Mikołajczak PŁ, Thiem B. Medicinal plants in the phytotherapy of alcohol or nicotine addiction. Implication for plants in vitro cultures. Przegl Lek 2013; 70(10):869-74. Search in Google Scholar

11. Szulc M, Mularczyk P, Grządzielski P, Zakowicz P, Kujawski R, Gryszczyńska A et al. Influence of extracts from Rhodiola rosea and Rhodiola kirilowii on the development of alcohol tolerance in rats. Herba Pol 2018 a; 64(4):34-43. doi: https://dx.doi.org/10.2478/hepo-2018-002110.2478/hepo-2018-0021 Search in Google Scholar

12. Szulc M, Mularczyk P, Kujawski R, Gryszczyń-ska A, Kamińska E, Geppert B et al. Influence of salidroside, a neuroactive compound of Rhodiola rosea L., on alcohol tolerance development in rats. Herba Pol 2018 b; 64 (1): 22-35. doi: https://dx.doi.org/10.2478/hepo-2018-000210.2478/hepo-2018-0002 Search in Google Scholar

13. Xue Z, Yang B. Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 2016; 21(8):991. doi: https://dx.doi.org/10.3390/molecules2108099110.3390/molecules21080991627316027483229 Search in Google Scholar

14. Chang YW, Yao HT, Hsieh SH, Lu TJ, Yeh TK. Quantitative determination of salidroside in rat plasma by on-line solid-phase extraction integrated with high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr 2007; B;857(1):164-169. doi: https://dx.doi.org/10.1016/j.jchromb.2007.06.02910.1016/j.jchromb.2007.06.02917631426 Search in Google Scholar

15. Zhang J, Chen XH, Wang P, Huo L, Shen ZD, Guo XR et al. LC-MS determination and pharmacokinetic study of salidroside in rat plasma after oral administration of traditional Chinese medicinal preparation Rhodiola crenulata extract. Chromatographia 2008; 67(9):695–700. doi: https://dx.doi.org/10.1365/s10337-008-0585-710.1365/s10337-008-0585-7 Search in Google Scholar

16. Zhang Y, Li L, Lin L, Liu J, Zhang Z, Xu D et al. Pharmacokinetics, tissue distribution, and excretion of salidroside in rats. Planta Med 2013; 79(15):1429-1433. doi: https://dx.doi.org/10.1055/s-0033-135080710.1055/s-0033-135080724043591 Search in Google Scholar

17. Mao Y, Li Y, Yao N. Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography. J Pharm Biomed Anal 2007a; 45(3):510-515. doi: https://dx.doi.org/10.1016/j.jpba.2007.05.03110.1016/j.jpba.2007.05.03117628386 Search in Google Scholar

18. Mao Y, Zhang X, Zhang X, Lu G. Development of an HPLC method for the determination of salidro-side in beagle dog plasma after administration of salidroside injection: application to a pharmacokinetics study. J Sep Sci 2007b; 30(18):3218-3222. doi: https://dx.doi.org/10.1002/jssc.20070027310.1002/jssc.20070027317973272 Search in Google Scholar

19. Yu S, Liu L, Wen T, Liu Y, Wang D, He Y et al. Development and validation of a liquid chromatographic/electrospray ionization mass spectrometric method for the determination of salidroside in rat plasma: application to the pharmacokinetics study. J Chromatogr B 2008; 861(1):10-15. doi: https://dx.doi.org/10.1016/j.jchromb.2007.11.03510.1016/j.jchromb.2007.11.03518088572 Search in Google Scholar

20. Chernysheva GA, Smolniakova VI, Cherkashina IV, Plotnikov MB, Tolstikova TG, Krysin AP et al. The main pharmacokinetic parameters of p-tyrosol upon intravenous injection in rats, Eksp Klin Farmakol 2005; 68(6):43-4. Search in Google Scholar

21. Yang ZR, Wang HF, Zuo TC, Guan LL, Dai N. Salidroside alleviates oxidative stress in the liver with non-alcoholic steatohepatitis in rats. BMC Pharmacol Toxicol 2016; 17(1):1-6. doi: https://dx.doi.org/10.1186/s40360-016-0059-810.1186/s40360-016-0059-8483119427075663 Search in Google Scholar

22. Wang S, He H, Chen L, Zhang W, Zhang X, Chen J. Protective effects of salidroside in the MPTP/MPP+-induced model of Parkinson’s disease through ROS–NO-related mitochondrion pathway. Mol Neurobiol 2015; 51(2):718-728. doi: https://dx.doi.org/10.1007/s12035-014-8755-010.1007/s12035-014-8755-024913834 Search in Google Scholar

23. Thu OK, Nilsen OG, Hellum B. In vitro inhibition of cytochrome P-450 activities and quantification of constituents in a selection of commercial Rhodiola rosea products. Pharm Biol 2016; 54(12):3249-3256. doi: https://dx.doi.org/10.1080/13880209.2016.122314510.1080/13880209.2016.122314527572116 Search in Google Scholar

24. Wei YL, Du HJ, Lin YP, Wu ML, Xu RA. Effects of salidroside on rat CYP enzymes by a cocktail of probe drugs. Iran J Basic Med Sci 2018; 21(4):422. doi: https://dx.doi.org/10.22038/IJBMS.2018.26106.6414 Search in Google Scholar

25. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162(1):156-9. doi: https://dx.doi.org/10.1006/abio.1987.999910.1006/abio.1987.99992440339 Search in Google Scholar

26. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30(9):e36-e36. doi: https://dx.doi.org/10.1093/nar/30.9.e3610.1093/nar/30.9.e3611385911972351 Search in Google Scholar

27. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001; 29(9):e45-e45. doi: https://dx.doi.org/10.1093/nar/29.9.e4510.1093/nar/29.9.e455569511328886 Search in Google Scholar

28. Cairns W, Smith CD, McLaren AW, Wolf CR. Characterization of the human cytochrome P4502D6 promoter: a potential role for antagonistic interactions between members of the nuclear receptor family. J Biol Chem 1996; 271(41):25269-25276. doi: https://dx.doi.org/10.1074/jbc.271.41.2526910.1074/jbc.271.41.252698810289 Search in Google Scholar

29. Honkakoski P, Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000; 347(2):321-337. doi: https://dx.doi.org/10.1042/bj347032110.1042/bj3470321 Search in Google Scholar

30. Ni S, Wang X, Wang J, Zeng S, Zhao Z. Expression of CYP3A23/1, CYP3A2, PXR, CAR and HNF4α in large-for-gestational-age neonatal rats. Pharmazie 2009; 64(4):252-257. Search in Google Scholar

31. Yao R, Yasuoka A, Kamei A, Ushiama S, Kitagawa Y, Rogi T et al. Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages. PloS One 2014; 9(2):e87142. doi: https://dx.doi.org/10.1371/journal.pone.008714210.1371/journal.pone.0087142391194224498295 Search in Google Scholar

32. Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR expression in health and disease cells 2020; 9(11):2395. doi: https://dx.doi.org/10.3390/cells911239510.3390/cells9112395769264733142929 Search in Google Scholar

33. Domínguez-Avila JA, González-Aguilar GA, Alvarez-Parrilla E, De la Rosa LA. Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. Int J Mol Sci 2016; 17(7):1002. doi: https://dx.doi.org/10.3390/ijms1707100210.3390/ijms17071002496437827367676 Search in Google Scholar

34. Pallauf K, Duckstein N, Hasler M, Klotz LO, Rimbach G. Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARγ. Oxid Med Cell Longev 2017; 2017:4397340. doi: https://dx.doi.org/10.1155/2017/439734010.1155/2017/4397340551852928761622 Search in Google Scholar

35. Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharm Sin B 2017; 7(4):427-438. doi: https://dx.doi.org/10.1016/j.apsb.2017.05.00510.1016/j.apsb.2017.05.005 Search in Google Scholar

36. Németh K, Plumb G W, Berrin J G, Juge N, Jacob R, Naim H Y, Kroon PA. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 2003; 42(1):29-42. doi: https://dx.doi.org/10.1007/s00394-003-0397-310.1007/s00394-003-0397-3 Search in Google Scholar

37. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Letters 1998; 436(1):71-75. doi: https://dx.doi.org/10.1016/S0014-5793(98)01101-610.1016/S0014-5793(98)01101-6 Search in Google Scholar

38. Day AJ, Williamson G. Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. Br J Nutr 2001; 86(S1):S105-S110. doi: https://dx.doi.org/10.1079/BJN200134210.1079/BJN200134211520427 Search in Google Scholar

39. Spencer JP. Metabolism of tea flavonoids in the gastrointestinal tract. J Nutr 2003; 133(10):3255S-3261S. doi: https://dx.doi.org/10.1093/jn/133.10.3255S10.1093/jn/133.10.3255S14519823 Search in Google Scholar

40. Guo N, Zhu M, Han X, Sui D, Wang Y, Yang Q. The metabolism of salidroside to its aglycone p-tyrosol in rats following the administration of salidroside. PLoS One 2014; 9(8):e103648. doi: https://dx.doi.org/10.1371/journal.pone.010364810.1371/journal.pone.0103648412513825101641 Search in Google Scholar

41. Han F, Li Y, Mao X, Zhang X, Guan J, Song A et al. Metabolic profile of salidroside in rats using high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 2015; 408(7):1975-1981. doi: https://dx.doi.org/10.1007/s00216-015-9080-910.1007/s00216-015-9080-926558763 Search in Google Scholar

42. Hu Z, Wang Z, Liu Y, Wu Y, Han X, Zheng J et al. Metabolite profile of salidroside in rats by ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography coupled with quadrupole-linear ion trap mass spectrometry. J Agric Food Chem 2015; 63(41):8999-9005. doi: https://dx.doi.org/10.1021/acs.jafc.5b0451010.1021/acs.jafc.5b0451026461036 Search in Google Scholar

43. Guo N, Hu Z, Fan X, Zheng J, Zhang D, Xu T et al. Simultaneous determination of salidroside and its aglycone metabolite p-tyrosol in rat plasma by liquid chromatography-tandem mass spectrometry. Molecules 2012; 17(4):4733-4754. doi: https://dx.doi.org/10.3390/molecules1704473310.3390/molecules17044733626890222525439 Search in Google Scholar

44. Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X et al. Production of salidroside in metabolically engineered Escherichia coli. Sci Rep 2014; 4(1):1-8. doi: https://dx.doi.org/10.1038/srep0664010.1038/srep06640420041125323006 Search in Google Scholar

45. Cui Q, Pan Y, Xu X, Zhang W, Wu X, Qu S et al. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF–MS. Fitoterapia 2016; 109:67-74. doi: https://dx.doi.org/10.1016/j.fitote.2015.12.01110.1016/j.fitote.2015.12.01126705842 Search in Google Scholar

46. Luo Z, Ma X, Liu Y, Lu L, Yang R, Yu G et al. An approach to characterizing the complicated sequential metabolism of salidroside in rats. Molecules 2016; 21(6):706. doi: https://dx.doi.org/10.3390/molecules2106070610.3390/molecules21060706627285527248984 Search in Google Scholar

47. Kikuchi Y, Tsujimoto K, Kurahashi O. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 1997; 63(2):761-762. doi: https://dx.doi.org/10.1128/aem.63.2.761-762.199710.1128/aem.63.2.761-762.19971683669023954 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo