1. bookVolume 67 (2021): Edizione 3 (September 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Microwave-assisted extraction of phenolic compounds from coffee (Coffea robusta L. Linden) bee pollen

Pubblicato online: 15 Nov 2021
Volume & Edizione: Volume 67 (2021) - Edizione 3 (September 2021)
Pagine: 37 - 44
Ricevuto: 29 May 2021
Accettato: 12 Aug 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. Chemical composition and botanical evaluation of dried bee pollen pellets. J Food Compos Anal 2005; 18:105-11. doi: http://dx.doi.org/10.1016/j.jfca.2003.10.00810.1016/j.jfca.2003.10.008 Search in Google Scholar

2. Li QQ, Wang K, Marcucci MC, Sawaya ACHF, Hu L, Xue AF et al. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J Funct Foods 2018; 49:472-484. doi: http://dx.doi.org/10.1016/j.jff.2018.09.00810.1016/j.jff.2018.09.008 Search in Google Scholar

3. Sattler JAG, de Melo ILP, Granato D, Araújo E, de Freitas ADS, Barth OM et al. Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil. Food Res Int 2015; 77:82-91. doi: http://dx.doi.org/10.1016/j.foodres.2015.09.01310.1016/j.foodres.2015.09.013 Search in Google Scholar

4. Komosinska-Vassev K, Olczyk P, Kafmierczak J, Mencner L, Olczyk K. Bee pollen: Chemical composition and therapeutic application. J Evidence-Based Complementary Altern Med 2015; ID 297425.10.1155/2015/297425437738025861358 Search in Google Scholar

5. Yen NTH, Quoc LPT. Chemical composition of dried Stevia rebaudiana Bertoni leaves and effect of ultrasound-assisted extraction on total steviosides content in extract. Herba Pol 2021; 67(1):1-7. doi: http://dx.doi.org/10.2478/hepo-2021-000310.2478/hepo-2021-0003 Search in Google Scholar

6. Quoc LPT, Muoi NV. Microwave-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. roots. Acta Sci Pol Technol Aliment 2016; 15(2):181-189. doi: http://dx.doi.org/10.17306/J.AFS.2016.2.1810.17306/J.AFS.2016.2.1828071008 Search in Google Scholar

7. Pinelo M, Rubilar M, Jerez M, Sineiro J, Núnez MJ. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and anti-radical activity of extracts from different components of grape pomace. J Agric Food Chem 2005; 53:2111-2117.10.1021/jf048811015769143 Search in Google Scholar

8. Statista Research Department. http://www.statista.com/statistics/315003/vietnam-total-coffee-consumption, accessed in March 18. 2021. Search in Google Scholar

9. Quoc LPT, Muoi NV. Effects of treatment methods on total polyphenol content and antioxidant activity of Polygonum multiflorum Thunb. root extract. Annals Food Sci Technol 2015; 16(1):78-84. Search in Google Scholar

10. Tan MC, Tan CP, Ho CW. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int Food Res J 2013; 20(6):3117-3123. Search in Google Scholar

11. Ares AM, Valverde S, Bernal JL, Nozal MJ, Bernal J. Extraction and determination of bioactive compounds from bee pollen. J Pharm Biomed Anal 2018; 147:110-124. doi: http://dx.doi.org/10.1016/j.jpba.2017.08.00910.1016/j.jpba.2017.08.00928851545 Search in Google Scholar

12. Galan AM, Calinescu I, Trifan A, Winkworth-Smith C, Calvo-Carrascal M, Dodds C et al. New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chem Eng Process 2017; 116:29-39. doi: http://dx.doi.org/10.1016/j.cep.2017.03.00610.1016/j.cep.2017.03.006 Search in Google Scholar

13. Kostić AŽ, Milinčić DD, Gašić UM, Nedić N, Stanojević SP, Tešić ŽL et al. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT - Food Sci Technol 2019; 112:108244. doi: http://dx.doi.org/10.1016/j.lwt.2019.06.01110.1016/j.lwt.2019.06.011 Search in Google Scholar

14. Chirinos R, Rogez H, Campos D, Pedreschi R, Larondelle Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep Purif Technol 2007; 55:217-225. doi: http://dx.doi.org/10.1016/j.seppur.2006.12.00510.1016/j.seppur.2006.12.005 Search in Google Scholar

15. Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Sobczak A, Stojko R et al. Polyphenol content and antioxidant activity of bee pollen extracts from Poland. J Apic Res 2016; 54(5):482-490. doi: http://dx.doi.org/10.1080/00218839.2016.118691610.1080/00218839.2016.1186916 Search in Google Scholar

16. Zhao CN, Zhang JJ, Li Y, Meng X, Li HB. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018; 23(10):ID 2498. doi: http://dx.doi.org/10.3390/molecules2310249810.3390/molecules23102498 Search in Google Scholar

17. Al-Farsi MA, Lee CY. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 2008; 108:977-985. doi: http://dx.doi.org/10.1016/j.foodchem.2007.12.00910.1016/j.foodchem.2007.12.009 Search in Google Scholar

18. Herodež ŠS, Hadolin M, Škerget M, Knez Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem 2003; 80:275-282. doi: http://dx.doi.org/10.1016/S0308-8146(02)00382-510.1016/S0308-8146(02)00382-5 Search in Google Scholar

19. Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A 2004; 1054:97-103. doi: http://dx.doi.org/10.1016/j.chroma.2004.08.05910.1016/j.chroma.2004.08.059 Search in Google Scholar

20. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S et al. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 2009; 70:63-70. doi: http://dx.doi.org/10.1016/j.seppur.2009.08.01210.1016/j.seppur.2009.08.012 Search in Google Scholar

21. Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem 2012; 133:1292-1298. doi: http://dx.doi.org/10.1016/j.foodchem.2011.08.00210.1016/j.foodchem.2011.08.002 Search in Google Scholar

22. Quoc LPT, Muoi NV. Pectinase-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. root. Carpathian J Food Sci Technol 2017; 9(3):30-37. Search in Google Scholar

23. Aybastier O, Isık E, Sahin S, Demir C. Optimization of ultrasonic-assisted extraction of anti-oxidant compounds from blackberry leaves using response surface methodology. Ind Crops Prod 2013; 44:558-565. doi: http://dx.doi.org/10.1016/j.indcrop.2012.09.02210.1016/j.indcrop.2012.09.022 Search in Google Scholar

24. Kaderides K, Papaoikonomou L, Serafim M, Goula AM. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process 2019; 137:1-11. doi: http://dx.doi.org/10.1016/j.cep.2019.01.00610.1016/j.cep.2019.01.006 Search in Google Scholar

25. Spigno G, De Faveri DM. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J Food Eng 2007; 78:793-801. doi: http://dx.doi.org/10.1016/j.jfoodeng.2005.11.02010.1016/j.jfoodeng.2005.11.020 Search in Google Scholar

26. Zhou HY, Liu CZ. Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 2006; 1129:135-139. doi: http://dx.doi.org/10.1016/j.chroma.2006.07.08310.1016/j.chroma.2006.07.08316919654 Search in Google Scholar

27. Jiao J, Li ZG, Gai QY, Li XJ, Wei FY, Fu YJ et al. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem 2014; 147:17-24. doi: http://dx.doi.org/10.1016/j.foodchem.2013.09.07910.1016/j.foodchem.2013.09.07924206680 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo