[
1. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. Chemical composition and botanical evaluation of dried bee pollen pellets. J Food Compos Anal 2005; 18:105-11. doi: http://dx.doi.org/10.1016/j.jfca.2003.10.00810.1016/j.jfca.2003.10.008
]Search in Google Scholar
[
2. Li QQ, Wang K, Marcucci MC, Sawaya ACHF, Hu L, Xue AF et al. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J Funct Foods 2018; 49:472-484. doi: http://dx.doi.org/10.1016/j.jff.2018.09.00810.1016/j.jff.2018.09.008
]Search in Google Scholar
[
3. Sattler JAG, de Melo ILP, Granato D, Araújo E, de Freitas ADS, Barth OM et al. Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil. Food Res Int 2015; 77:82-91. doi: http://dx.doi.org/10.1016/j.foodres.2015.09.01310.1016/j.foodres.2015.09.013
]Search in Google Scholar
[
4. Komosinska-Vassev K, Olczyk P, Kafmierczak J, Mencner L, Olczyk K. Bee pollen: Chemical composition and therapeutic application. J Evidence-Based Complementary Altern Med 2015; ID 297425.10.1155/2015/297425437738025861358
]Search in Google Scholar
[
5. Yen NTH, Quoc LPT. Chemical composition of dried Stevia rebaudiana Bertoni leaves and effect of ultrasound-assisted extraction on total steviosides content in extract. Herba Pol 2021; 67(1):1-7. doi: http://dx.doi.org/10.2478/hepo-2021-000310.2478/hepo-2021-0003
]Search in Google Scholar
[
6. Quoc LPT, Muoi NV. Microwave-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. roots. Acta Sci Pol Technol Aliment 2016; 15(2):181-189. doi: http://dx.doi.org/10.17306/J.AFS.2016.2.1810.17306/J.AFS.2016.2.1828071008
]Search in Google Scholar
[
7. Pinelo M, Rubilar M, Jerez M, Sineiro J, Núnez MJ. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and anti-radical activity of extracts from different components of grape pomace. J Agric Food Chem 2005; 53:2111-2117.10.1021/jf048811015769143
]Search in Google Scholar
[
8. Statista Research Department. http://www.statista.com/statistics/315003/vietnam-total-coffee-consumption, accessed in March 18. 2021.
]Search in Google Scholar
[
9. Quoc LPT, Muoi NV. Effects of treatment methods on total polyphenol content and antioxidant activity of Polygonum multiflorum Thunb. root extract. Annals Food Sci Technol 2015; 16(1):78-84.
]Search in Google Scholar
[
10. Tan MC, Tan CP, Ho CW. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int Food Res J 2013; 20(6):3117-3123.
]Search in Google Scholar
[
11. Ares AM, Valverde S, Bernal JL, Nozal MJ, Bernal J. Extraction and determination of bioactive compounds from bee pollen. J Pharm Biomed Anal 2018; 147:110-124. doi: http://dx.doi.org/10.1016/j.jpba.2017.08.00910.1016/j.jpba.2017.08.00928851545
]Search in Google Scholar
[
12. Galan AM, Calinescu I, Trifan A, Winkworth-Smith C, Calvo-Carrascal M, Dodds C et al. New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chem Eng Process 2017; 116:29-39. doi: http://dx.doi.org/10.1016/j.cep.2017.03.00610.1016/j.cep.2017.03.006
]Search in Google Scholar
[
13. Kostić AŽ, Milinčić DD, Gašić UM, Nedić N, Stanojević SP, Tešić ŽL et al. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT - Food Sci Technol 2019; 112:108244. doi: http://dx.doi.org/10.1016/j.lwt.2019.06.01110.1016/j.lwt.2019.06.011
]Search in Google Scholar
[
14. Chirinos R, Rogez H, Campos D, Pedreschi R, Larondelle Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep Purif Technol 2007; 55:217-225. doi: http://dx.doi.org/10.1016/j.seppur.2006.12.00510.1016/j.seppur.2006.12.005
]Search in Google Scholar
[
15. Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Sobczak A, Stojko R et al. Polyphenol content and antioxidant activity of bee pollen extracts from Poland. J Apic Res 2016; 54(5):482-490. doi: http://dx.doi.org/10.1080/00218839.2016.118691610.1080/00218839.2016.1186916
]Search in Google Scholar
[
16. Zhao CN, Zhang JJ, Li Y, Meng X, Li HB. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018; 23(10):ID 2498. doi: http://dx.doi.org/10.3390/molecules2310249810.3390/molecules23102498
]Search in Google Scholar
[
17. Al-Farsi MA, Lee CY. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 2008; 108:977-985. doi: http://dx.doi.org/10.1016/j.foodchem.2007.12.00910.1016/j.foodchem.2007.12.009
]Search in Google Scholar
[
18. Herodež ŠS, Hadolin M, Škerget M, Knez Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem 2003; 80:275-282. doi: http://dx.doi.org/10.1016/S0308-8146(02)00382-510.1016/S0308-8146(02)00382-5
]Search in Google Scholar
[
19. Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A 2004; 1054:97-103. doi: http://dx.doi.org/10.1016/j.chroma.2004.08.05910.1016/j.chroma.2004.08.059
]Search in Google Scholar
[
20. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S et al. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 2009; 70:63-70. doi: http://dx.doi.org/10.1016/j.seppur.2009.08.01210.1016/j.seppur.2009.08.012
]Search in Google Scholar
[
21. Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem 2012; 133:1292-1298. doi: http://dx.doi.org/10.1016/j.foodchem.2011.08.00210.1016/j.foodchem.2011.08.002
]Search in Google Scholar
[
22. Quoc LPT, Muoi NV. Pectinase-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. root. Carpathian J Food Sci Technol 2017; 9(3):30-37.
]Search in Google Scholar
[
23. Aybastier O, Isık E, Sahin S, Demir C. Optimization of ultrasonic-assisted extraction of anti-oxidant compounds from blackberry leaves using response surface methodology. Ind Crops Prod 2013; 44:558-565. doi: http://dx.doi.org/10.1016/j.indcrop.2012.09.02210.1016/j.indcrop.2012.09.022
]Search in Google Scholar
[
24. Kaderides K, Papaoikonomou L, Serafim M, Goula AM. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process 2019; 137:1-11. doi: http://dx.doi.org/10.1016/j.cep.2019.01.00610.1016/j.cep.2019.01.006
]Search in Google Scholar
[
25. Spigno G, De Faveri DM. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J Food Eng 2007; 78:793-801. doi: http://dx.doi.org/10.1016/j.jfoodeng.2005.11.02010.1016/j.jfoodeng.2005.11.020
]Search in Google Scholar
[
26. Zhou HY, Liu CZ. Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 2006; 1129:135-139. doi: http://dx.doi.org/10.1016/j.chroma.2006.07.08310.1016/j.chroma.2006.07.08316919654
]Search in Google Scholar
[
27. Jiao J, Li ZG, Gai QY, Li XJ, Wei FY, Fu YJ et al. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem 2014; 147:17-24. doi: http://dx.doi.org/10.1016/j.foodchem.2013.09.07910.1016/j.foodchem.2013.09.07924206680
]Search in Google Scholar