1. bookVolume 65 (2019): Edizione 1 (March 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Pentacyclic triterpenoids and polyphenols accumulation in cell suspension culture of Chaenomeles japonica (Thunb.) Lindl. ex Spach

Pubblicato online: 02 May 2019
Volume & Edizione: Volume 65 (2019) - Edizione 1 (March 2019)
Pagine: 1 - 11
Ricevuto: 30 Mar 2018
Accettato: 25 Nov 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-8343
Prima pubblicazione
04 Apr 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Weber C. The genus Chaenomeles (Rosaceae). J Arnold Arbor 1964; 45:161-205, 302-345 doi: http://dx.doi.org/10.3390/ijms1307894310.3390/ijms13078943343027522942744Apri DOISearch in Google Scholar

2. Rumpunen K. Chaenomeles: potential new fruit crop for Northern Europe. In: Janick J, Whipkey A (eds.). Trends in New Crops and New Uses. ASHA Press, Alexandia, VA, USA 2002; 385-392.Search in Google Scholar

3. Hallmann E, Orpel E, Rembiałkowska E. Content of biologically active compounds in some fruits from natural state. Veg Crop Res Bull 2011; 75:81-90 doi: http://dx.doi.org/10.2478/v10032-011-0020-810.2478/v10032-011-0020-8Apri DOISearch in Google Scholar

4. Nahorska A, Dzwoniarska M, Thiem B. Owoce pigwowca japońskiego (Chaenomeles japonica (Thunb.) Lindl. ex Spach) źródłem substancji biologicznie aktywnych. Post Fitoter 2014; 4:239-246.Search in Google Scholar

5. Xu YN, Kim JS, Kang SS, Son K. H, Kim HP, Chang HW et al. A new acylated triterpene from the roots of Chaenomeles japonica. Chem Pharm Bull 2002; 50(8):1124-1125. http://dx.doi.org/10.1248/cpb.50.112410.1248/cpb.50.112412192151Search in Google Scholar

6. Bae KH. The medicinal plants of Korea. Kyo-Hah Publ Co, Seoul 2000; 213.Search in Google Scholar

7. www.ec.europa.euSearch in Google Scholar

8. Babaloa I, Shode FO. Ubiquitous ursolic acid: a potential pentacyclic triterpene natural product – a review. J Pharmacogn Phytochem 2013; 2(2):214-222.Search in Google Scholar

9. Yogeeswari P, Sriram D. Betulinic acid and derivations: a review on their biological properties. Curr Med Chem 2005; 12(6):657-666. doi: http://dx.doi.org/10.2174/092986705320221410.2174/092986705320221415790304Apri DOISearch in Google Scholar

10. Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. Int J Food Prop 2017; 20(2):1700-1741. doi: http://dx.doi.org/10.1080/10942912.2017.135401710.1080/10942912.2017.1354017Search in Google Scholar

11. Nabeed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumazaid M et al. Chlorogenic acid: a pharmacological review and call for further research. Biomed Pharmacother 2018; 97:67-74. doi: http://dx.doi.org/10.1016/j.biopha.2017.10.06410.1016/j.biopha.2017.10.06429080460Apri DOISearch in Google Scholar

12. Smetanska I. Production of secondary metabolites using plant cell cultures. Adv Bioch Engin/Biotechnol 2008; 111:187-228. doi: http://dx.doi.org/10.1007/10_2008_10310.1007/10_2008_10318594786Apri DOISearch in Google Scholar

13. Yue W, Ming Q-L, Lin B, Rahman K, Zheng Ch-J, Han T et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotech 2016; 36(2):215-232. doi: http://dx.doi.org/10.3109/07388551.2014.92398610.3109/07388551.2014.92398624963701Apri DOISearch in Google Scholar

14. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 1962; 15:473-497.10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

15. Kikowska M, Włodarczyk A, Rewers M, Sliwinska E, Studzinska-Sroka E, Witkowska-Banaszczak E et al. Micropropagation of Chaenomeles japonica: a step towards production of polyphenol-rich extracts showing antioxidant and antimicrobial activities. Special Issue of Molecules-Phenolic Compounds from Plants: Chemistry, Analysis and Biological Activity 2019; (in press).10.3390/molecules24071314648002830987219Search in Google Scholar

16. Kikowska M, Chmielewska M, Włodarczyk A, Studzińska-Sroka E, Żuchowski J, Stochmal A et al. Effect of pentacyclic triterpenes-rich callus extract of Chaenomeles japonica (Thunb.) Lindl. ex Spach on viability, morphology, and proliferation of normal skin fibroblasts. Molecules 2018; 23(11):2003. http://dx.doi.org/10.3390/molecules10.3390/Apri DOISearch in Google Scholar

17. Yang G, Fen W, Xiao W, Sun H. Study on determination of pentacyclic triterpenoids in Chaenomeles by HPLC-ELSD. J Chromatogr Sci 2009; 47(8): 718-722.10.1093/chromsci/47.8.718Search in Google Scholar

18. Bandhakavi S, Kamarapu P. Production of oleanolic acid by plant tissue culture. J Pharmacogn Phytochem 2016; 4:1-4.Search in Google Scholar

19. Malinowska M, Sikora E, Ogonowski J. Production of triterpenoids with cell and tissue cultures. Acta Biochim Pol 2013; 60(4):731-735.Search in Google Scholar

20. Srivastava P, Chaturvedi R. Simultaneous determination and quantification of three pentacyclic triterpenoids – betulinic acid, oleanolic acid, and ursolic acid – in cell cultures of Lantana camara L. In Vitro Cell Dev Biol – Plant 2010; 46:549-557. doi: http://dx.doi.org/10.1007/s11627-9298-310.1007/s11627-9298-3Apri DOISearch in Google Scholar

21. Srivastava P, Kasoju N, Bora U, Chaturvedi R. Accumulation of betulinic, oleanolic, and ursolic acids in in vitro cell cultures of Lantana camara L. and their significant cytotoxic effects on HeLa cell lines. Biotech Bioproc Engin 2010; 15:10381046. doi: http://dx.doi.org/10.1007/s12257-0100054-7Search in Google Scholar

22. Skrzypek Z, Wysokińska H. Sterols and triter-penes in cell culture of Hyssopus officinalis L. Z Naturforsch 2010; 58c:308-312. doi: http://dx.doi.org/10.1515/znc-2003-5-60210.1515/znc-2003-5-602Apri DOISearch in Google Scholar

23. Bonfill M, Mangas S, Moyano E, Cusido RM, Palazon J. Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tiss Organ Cult 2011; 104:61-67. doi: http://dx.doi.org/10.1007/s11240-010-9804-710.1007/s11240-010-9804-7Apri DOISearch in Google Scholar

24. Kikowska M, Budzianowski J, Krawczyk A, Thiem B. Accumulation of rosmarinic, chlorogenic and caffeic acids in in vitro cultures of Eryngium planum L. Acta Physiol Plant 2012; 34:2425. doi: http://dx.doi.org/10.1007/s11738-012-1011-110.1007/s11738-012-1011-1Apri DOISearch in Google Scholar

25. Wang J, Liao XL, Zhang H, Du J, Chen P. Accumulation of chlorogenic acid in cell suspension cultures of Eucommia ulmoides. Plant Cell Tiss Organ Cult 2003; 74(2):193-195. doi: http://dx.doi.org/10.1023/A:102395712910.1023/A:1023957129Apri DOISearch in Google Scholar

26. Li Q, Tang M, Tan Y, Ma D, Wang Y, Zhang H. Improved production of chlorogenic acid from cell suspension cultures of Lonicera macranthoids. Trop J Pharm Res 2016; 15(5):919-927. doi: http://dx.doi.org/10.4314/tjpr.v15i5.410.4314/tjpr.v15i5.4Apri DOISearch in Google Scholar

27. Baumann TW, Rohning L. Formation and intracellular accumulation of caffeine and chlorogenic acid in suspension cultures of Coffea arabica. Phy-tochemistry 1989; 28(10):2667-2669. doi: http://dx.doi.org/10.1016/S0031-9422(00)98064-610.1016/S0031-9422(00)98064-6Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo