1. bookVolume 41 (2022): Edizione 2 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-947X
Prima pubblicazione
24 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Assessment of Naturalness: The Response of Social Behavior Types of Plants to Anthropogenic Impact

Pubblicato online: 04 Jul 2022
Volume & Edizione: Volume 41 (2022) - Edizione 2 (June 2022)
Pagine: 135 - 146
Ricevuto: 04 Nov 2021
Accettato: 18 Mar 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1337-947X
Prima pubblicazione
24 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

The aims of this research are to assess the relationship between the concepts of hemeroby and naturalness of plant communities and to test the hypothesis about the ordinal nature of the response of social behavior types of plants under anthropogenic influence. Study area is the recreational zone of the Botanical Garden of Dnipro National University, named after Oles Gonchar, Dnipro City, Ukraine (48.43°N 35.05°E). Four polygons (105 relevés in each) were examined. Two polygons were in the zone after park reconstruction, and two were in the zone without reconstruction. The vegetation community ordination was performed using RLQ analysis. The Q-table was represented by eight dummy variables, which indicated social behavior types. The most important predictors of naturalness were aggressive alien species and invaders and weeds (positive dependence) and disturbance tolerants (negative dependence). The most important predictors of hemeroby were aggressive alien species (negative dependence) and ruderal competitors, invaders, and disturbance tolerants (positive dependence). Naturalness and hemeroby reflect different strategies for transforming a plant community and are not completely symmetrically opposed concepts. The response of a plant community is multivariate, so the naturalness metric based on the social behavior types is only able to distinguish well between the extreme states of a plant community, but is a poor measure for a more detailed assessment of naturalness.

Keywords

Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Bot. Hung., 39, 97–181. Search in Google Scholar

Budakova, V.S., Yorkina, N.V., Telyuk, P.M., Umerova, A.K., Kunakh, O.M. & Zhukov O.V. (2021). Impact of recreational transformation of soil physical properties on micromolluscs in an urban park. Biosystems Diversity, 29(2), 78–87. DOI: 10.15421/012111. Apri DOISearch in Google Scholar

Connell, J.H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302–1310. DOI: 10.1126/science.199.4335.1302.17840770 Apri DOISearch in Google Scholar

Côté, S., Beauregard, R., Margni, M. & Bélanger L. (2021). Using naturalness for assessing the impact of forestry and protection on the quality of ecosystems in life cycle assessment. Sustainability, 13(16), 8859. DOI: 10.3390/su13168859. Apri DOISearch in Google Scholar

Cseresnyés, I., Cseresnyés-Bózsing, E., Tamás, J., Barina, Z. & Csontos P. (2014). Effect of Austrian pine on naturalness and succession of vegetation in reclaimed bauxite quarries. Applied Ecology and Environmental Research, 12(4), 931–946. DOI: 10.15666/aeer/1204_931946. Apri DOISearch in Google Scholar

Didukh, Y.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocenter. Search in Google Scholar

Domnich, V.I., Domnich, A.V. & Zhukov O.V. (2021). Phytoindication approach for assessing factors determining the habitat preferences of red deer (Cervus elaphus). Biosystems Diversity, 29(3), 3–13. DOI: 10.15421/012124. Apri DOISearch in Google Scholar

Dray, S., Choler, P., Dolédec, S., Peres-Neto, P.R., Thuiller, W., Pavoine, S. & Ter Braak C.J.F. (2014). Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14–21. DOI: 10.1890/13-0196.1.24649641 Apri DOISearch in Google Scholar

Dray, S. & Dufour A.B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20. DOI: 10.18637/jss.v022.i04. Apri DOISearch in Google Scholar

Dzwonko, Z. (2001). Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J. Appl. Ecol., 38(5), 942–951. DOI: 10.1046/j.1365-2664.2001.00649.x. Apri DOISearch in Google Scholar

Ellenberg, H., Weber, H.E., Dull, R., Wirth, V., Werner, W. & Paulissen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248. Search in Google Scholar

Erdős, L., Bátori, Z., Penksza, K., Dénes, A., Kevey, B., Kevey, D., Magnes, M., Sengl, P. & Tölgyesi C. (2017). Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Pol. J. Ecol., 65(1), 1–13. DOI: 10.3161/15052249PJE2017.65.1.001. Apri DOISearch in Google Scholar

Erdős, L., Kröel-Dulay, G., Bátori, Z., Kovács, B., Németh, C., Kiss, P.J. & Tölgyesi C. (2018). Habitat heterogeneity as a key to high conservation value in forest-grassland mosaics. Biol. Conserv., 226, 72–80. DOI: 10.1016/j.biocon.2018.07.029 Apri DOISearch in Google Scholar

Frank, D. & Klotz S. (1990). Biologisch-ökologische Daten zur Flor der DDR. Wissenschaftliche Beiträge der Martin-Luther-Universit at Halle, 32, 1–167. Search in Google Scholar

Goncharenko, I. & Kovalenko O. (2019). Oak forests of the class Quercetea pubescentis in Central-Eastern Ukraine. Thaiszia - Journal of Botany, 29(2), 191−215. DOI: 10.33542/TJB2019-2-05. Apri DOISearch in Google Scholar

Goncharenko, I., Semenishchenkov, Y., Tsakalos, J.L. & Mucina L. (2020). Thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Western Russia. Biologia, 75(3), 337–353. DOI: 10.2478/s11756-019-00413-w. Apri DOISearch in Google Scholar

Goncharenko, I.V. & Yatsenko H.M. (2020). Phytosociological study of the forest vegetation of Kyiv urban area (Ukraine). Hacquetia, 19(1), 99–126. DOI: 10.2478/hacq-2019-0012. Apri DOISearch in Google Scholar

Hill, M.O., Roy, D.B. & Thompson K. (2002). Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J. Appl. Ecol., 39(5), 708–720. DOI: 10.1046/j.1365-2664.2002.00746.x. Apri DOISearch in Google Scholar

Hobbs, R.J. & Huenneke L.F. (1992). Disturbance, diversity, and invasion: Implications for conservation. Conserv. Biol., 6(3), 324–337. DOI: 10.1046/j.1523-1739.1992.06030324.x. Apri DOISearch in Google Scholar

Kim, Y.-M., Zerbe, S. & Kowarik I. (2002). Human impact on flora and habitats in Korean rural settlements. Preslia, 74(4), 409–419. Search in Google Scholar

Kowarik, I. (1990). Some responses of flora and vegetation to urbanization in Central Europe. In H. Sukopp, S. Hejny & I. Kowarik (Eds.), Plants and plant communities in the urban environment (pp. 45–74). Hague: SPB Academic Publishing. Search in Google Scholar

Kunakh, O.M., Lisovets, O.I., Yorkina, N.V. & Zhukova Y.O. (2021a). Phytoindication assessment of the effect of reconstruction on the light regime of an urban park. Biosystems Diversity, 29(3), 84–93. DOI: 10.15421/012135. Apri DOISearch in Google Scholar

Kunakh, O.M., Yorkina, N.V., Turovtseva, N.M., Bredikhina, J.L., Balyuk, J.O. & Golovnya A.V. (2021b). Effect of urban park reconstruction on physical soil properties. Ecologia Balkanica, 13(2), 57–73. http://eb.bio.uni-plovdiv.bg Search in Google Scholar

Kunakh, O.M., Yorkina, N.V., Zhukov, O.V., Turovtseva, N.M., Bredikhina, Y.L. & Logvina-Byk T.A. (2020). Recreation and terrain effect on the spatial variation of the apparent soil electrical conductivity in an urban park. Biosystems Diversity, 28(1), 3–8. DOI: 10.15421/012001. Apri DOISearch in Google Scholar

Kurdyukova, O.N. (2015). Botanical and biological characteristics of weed sinusia of agrophytocenoses of the left-bank steppe of Ukraine and methods of their control. Lugansk: Lugansk National Taras Shevchenko University. Search in Google Scholar

Lykholat, Y., Khromykh, N., Didur, O., Kotovych, O., Kovalenko, I., Kovalenko, V., Tsyliuryk, O. & Lykholat T. (2021). The study of transformed herbaceous vegetation in the area flooded due to coal mine workings. Ekológia (Bratislava), 40(3), 222–229. DOI: 10.2478/eko-2021-0024. Apri DOISearch in Google Scholar

Machado, A. (2004). An index of naturalness. J. Nat. Conserv., 12(2), 95–110. DOI: 10.1016/j.jnc.2003.12.002. Apri DOISearch in Google Scholar

Moravčík, M., Sarvašová, Z., Merganič, J. & Schwarz M. (2010). Forest naturalness: Criterion for decision support in designation and management of protected forest areas. Environ. Manag., 46(6), 908–919. DOI: 10.1007/s00267-010-9506-2.20563808 Apri DOISearch in Google Scholar

Müller, J., Engel, H. & Blaschke M. (2007). Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. European Journal of Forest Research, 126(4), 513–527. DOI: 10.1007/s10342-007-0173-7. Apri DOISearch in Google Scholar

Paudel, S., Benavides, J.C., MacDonald, B., Longcore, T., Wilson, G.W.T. & Loss S.R. (2017). Determinants of native and non-native plant community structure on an oceanic island. Ecosphere, 8(9), e01927. DOI: 10.1002/ecs2.1927. Apri DOISearch in Google Scholar

R Core Team (2020). A language and environment for statistical computing. In R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (Vol. 2, p. https://www.R-project.org). http://www.r-project.org Search in Google Scholar

Seidling, W. & Fischer R. (2008). Deviances from expected Ellenberg indicator values for nitrogen are related to N throughfall deposition in forests. Ecological Indicators, 8(5), 639–646. DOI: 10.1016/j.ecolind.2007.09.004. Apri DOISearch in Google Scholar

Sengl, P., Magnes, M., Erdős, L. & Berg C. (2017). A test of naturalness indicator values to evaluate success in grassland restoration. Community Ecol., 18(2), 184–192. DOI: 10.1556/168.2017.18.2.8 Apri DOISearch in Google Scholar

Sukopp, H. (1969). Der Einfluss des Menschen auf die Vegetation. Vegetatio Acta Geobotanica, 17(1), 360–371. DOI: 10.1007/BF01965917. Apri DOISearch in Google Scholar

Sukopp, H. (1972). Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluß des Menschen. Ber. Landwirtsch., 50, 112–139. Search in Google Scholar

Terwayet Bayouli, I., Terwayet Bayouli, H., Dell’Oca, A., Meers, E. & Sun J. (2021). Ecological indicators and bioindicator plant species for bio-monitoring industrial pollution: Eco-based environmental assessment. Ecological Indicators, 125, 107508. DOI: 10.1016/j.ecolind.2021.107508. Apri DOISearch in Google Scholar

Tölgyesi, Cs. & Körmöczi L. (2012). Structural changes of a pannonian grassland plant community in relation to the decrease of water availability. Acta Bot. Hung., 54(3–4), 413–431. DOI: 10.1556/ABot.54.2012.3-4.17. Apri DOISearch in Google Scholar

Westhoff, V. (1971). The dynamic structure of plant communities in relation to the objectives of conservation. In E. Duffey & A.S. Watt (Eds.), The scientific management of animal and plant communities for conservation (pp. 3–14). Oxford: Blackwell. Search in Google Scholar

Westhoff, V. & Van Der Maarel E. (1978). The Braun-Blanquet Approach. In R.H. Whittaker (Ed.), Classification of plant communities (pp. 287–399). Dordrecht: Springer. DOI: 10.1007/978-94-009-9183-5_9. Apri DOISearch in Google Scholar

Winter, S. (2012). Forest naturalness assessment as a component of bio-diversity monitoring and conservation management. Forestry, 85(2), 293–304. DOI: 10.1093/forestry/cps004. Apri DOISearch in Google Scholar

Wulf, M. (1997). Plant species as indicators of ancient woodland in northwestern Germany. J. Veg. Sci., 8(5), 635–642. DOI: 10.2307/3237367. Apri DOISearch in Google Scholar

Yao, H., Ma, J., Fan, Y., Chen, X. & Tian M. (2019). Assessing the naturalness of a restored coal mine area on the Loess Plateau, China. PLOS ONE, 14(7), e0219447. DOI: 10.1371/journal.pone.0219447.662569831299049 Apri DOISearch in Google Scholar

Yorkina, N., Maslikova, K., Kunah, O. & Zhukov O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17(1), 29–45.10.37828/em.2018.17.5 Search in Google Scholar

Yorkina, N.V., Podorozhniy, S.M., Velcheva, L.G., Honcharenko, Y.V. & Zhukov O.V. (2020). Applying plant disturbance indicators to reveal the hemeroby of soil macrofauna species. Biosystems Diversity, 28(2), 181–194. DOI: 10.15421/012024. Apri DOISearch in Google Scholar

Yuan, Z.Y., Jiao, F., Li, Y.H. & Kallenbach R.L. (2016). Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep., 6(1), 22132. DOI: 10.1038/srep22132.476327226903041 Apri DOISearch in Google Scholar

Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: The ecological approach. Ekológia (Bratislava), 35(3), 263–278. DOI: 10.1515/eko-2016-0021. Apri DOISearch in Google Scholar

Zhukov, A.V. & Zadorozhnaya G.А. (2016). Spatio-temporal dynamics of the penetration resistance of recultivated soils formed after open cast mining. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 324–331. DOI: 10.15421/011642. Apri DOISearch in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y., Zhukova, Y. & Ganzha D. (2019a). The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest. Ekológia (Bratislava), 38(3), 253–272. DOI: 10.2478/eko-2019-0020. Apri DOISearch in Google Scholar

Zhukov, O.V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O. & Potapenko O.V. (2019b). Tree canopy affects soil macrofauna spatial patterns on broad- And meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46(2), 101–114. DOI: 10.2478/foecol-2019-0013. Apri DOISearch in Google Scholar

Zhukov, O., Yorkina, N., Budakova, V. & Kunakh O. (2021). Terrain and tree stand effect on the spatial variation of the soil penetration resistance in Urban Park. International Journal of Environmental Studies, 1–17. DOI: 10.1080/00207233.2021.1932368. Apri DOISearch in Google Scholar

Zinnen, J., Spyreas, G., Erdős, L., Berg, C. & Matthews J.W. (2021). Expert- based measures of human impact to vegetation. Appl. Veg. Sci., 24(1). DOI: 10.1111/avsc.12523. Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo