This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Ailizati, A., Nagahage, I. S. P., Miyagi, A., Ishikawa, T., Kawai-Yamada, M., Demura, T., & Yamaguchi, M. (2022). VND-INTERACTING2 effectively inhibits transcriptional activities of VASCULAR-RELATED NAC-DOMAIN7 through a conserved sequence. Plant Biotechnology, 39(2), 147–153. https://doi.org/10.5511/plantbiotechnology.22.0122aSearch in Google Scholar
Allan, A. C. (2019). Domestication: Colour and flavour joined by a shared transcription factor. Current Biology, 29(2), R57–R59. https://doi.org/10.1016/j.cub.2018.12.005Search in Google Scholar
Alshareef, N. O., Otterbach, S. L., Allu, A. D., Woo, Y. H., de Werk, T., Kamranfar, I., Mueller-Roeber, B., Tester, M., Balazadeh, S., & Schmöckel, S. M. (2022). NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Scientific Reports, 12(1), 11264. https://doi.org/10.1038/s41598-022-14429-xSearch in Google Scholar
Barco, B., & Clay, N. K. (2020). Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors. Frontiers in Plant Science, 10, 1775. https://doi.org/10.3389/fpls.2019.01775Search in Google Scholar
Blanc-Mathieu, R., Dumas, R., Turchi, L., Lucas, J., & Parcy, F. (2024). Plant-TFClass: A structural classification for plant transcription factors. Trends in Plant Science, 29(1), 40–51. https://doi.org/10.1016/j.tplants.2023.06.023Search in Google Scholar
Brian, L., Warren, B., McAtee, P., Rodrigues, J., Nieuwenhuizen, N., Pasha, A., David, K. M., Richardson, A., Provart, N. J., Allan, A. C., Varkonyi-Gasic, E., & Schaffer, R. J. (2021). A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 21(1), 121. https://doi.org/10.1186/s12870-021-02894-xSearch in Google Scholar
Butelli, E., Licciardello, C., Ramadugu, C., Durand-Hulak, M., Celant, A., Reforgiato Recupero, G., Froelicher, Y., & Martin, C. (2019). Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties. Current Biology, 29(1), 158–164.e2. https://doi.org/10.1016/j.cub.2018.11.040Search in Google Scholar
Chow, C. N., Yang, C. W., Wu, N. Y., Wang, H. T., Tseng, K. C., Chiu, Y. H., Lee, T. Y., & Chang, W. C. (2024). PlantPAN 4.0: updated database for identifying conserved non-coding sequences and exploring dynamic transcriptional regulation in plant promoters. Nucleic Acids Research, 52(D1), D1569–D1578. https://doi.org/10.1093/nar/gkad945Search in Google Scholar
Dang, X., Zhang, B., Li, C., & Nagawa, S. (2022). FvNST1b NAC protein induces secondary cell wall formation in strawberry. International Journal of Molecular Sciences, 23(21), 13212. https://doi.org/10.3390/ijms232113212Search in Google Scholar
Gong, X., Zhao, L-Y., Song, X-F., Lin, Z-K., Gu, B-J., Yan, J-X., Zhang, S-L., Tao, S-T., & Huang, X-S. (2019). Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biology, 19(1), 161. https://doi.org/10.1186/s12870-019-1760-8Search in Google Scholar
Gray, J., Bevan, M., Brutnell, T., Buell, C. R., Cone, K., Hake, S., Jackson, D., Kellogg, E., Lawrence, C., McCouch, S., Mockler, T., Moose, S., Paterson, A., Peterson, T., Rokshar, D., Souza, G. M., Springer, N., Stein, N., Timmermans, M., Wang, G. L., & Grotewold, E. (2009). A recommendation for naming transcription factor proteins in the grasses. Plant Physiology, 149(1), 4–6. https://doi.org/10.1104/pp.108.128504Search in Google Scholar
Hartmann, A., Berkowitz, O., Whelan, J., & Narsai, R. (2022). Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC Plant Biology, 22(1), 62. https://doi.org/10.1186/s12870-021-03406-7Search in Google Scholar
Hetz, C., Zhang, K. & Kaufman, R.J. (2020). Mechanisms, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology, 21, 421–438. https://doi.org/10.1038/s41580-020-0250-zSearch in Google Scholar
Hrmova, M., & Hussain, S.S. (2021). Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences, 22(11), 5662. https://doi.org/10.3390/ijms22115662Search in Google Scholar
Hu, X-L., Xie, F-F., Liang, W-W., Liang, Y-H., Zhang, Z-K., Zhao, J-T., Hu, G-B., & Qin, Y-H. (2022). HuNAC20 and HuNAC25, two novel NAC genes from pitaya, confer cold tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 23(4), 2189. https://doi.org/10.3390/ijms23042189Search in Google Scholar
Jan, S. U., Jamil, M., Bhatti, M. F., & Gul, A. (2019). Hallmark attributes of plant transcription factors and potentials of WRKY, MYB and NAC in abiotic stresses. In: Hasanuzzaman, M., Nahar, K., Fujita, M., Oku, H., Tofazzal, M. I. (eds.) Approaches for Enhancing Abiotic Stress Tolerance in Plants, CRC Press, Boca Raton, pp. 441–458.Search in Google Scholar
Karppinen, K., Lafferty, D. J., Albert, N. W., Mikkola, N., McGhie, T., Allan, A. C., Afzal, B. M., Häggman, H., Espley, R. V., & Jaakola, L. (2021). MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytologist, 232(3), 1350–1367. https://doi.org/10.1111/nph.17669Search in Google Scholar
Lai, X., Chahtane, H., Martin-Arevalillo, R., Zubieta, C., & Parcy, F. (2020). Contrasted evolutionary trajectories of plant transcription factors. Current Opinion in Plant Biology, 54, 101–107. https://doi.org/10.1016/j.pbi.2020.03.002Search in Google Scholar
Li, F., Shan, Y., Wang, H., Jiang, G., Ding, X., Liang, H., Wang, C., Kong, X., Xie, L., & Jiang, Y. (2023). A NAC transcriptional factor BrNAC029 is involved in cytokinin-delayed leaf senescence in postharvest Chinese flowering cabbage. Food Chemistry, 404(Pt B), 134657. https://doi.org/10.1016/j.foodchem.2022.134657Search in Google Scholar
Li, P-T., Chai, Z., Lin, P-P., Huang, C-H., Huang, G-Q., Xu, L-N., Deng, Z-H., Zhang, M-Q., Zhang, Y., & Zhao, X-W. (2020). Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.). BMC Genomics, 21(1), 685. https://doi.org/10.1186/s12864-020-07076-xSearch in Google Scholar
Li, Q., Zhou, L-Y., Li, Y-H., Zhang, D-P., & Gao, Y. (2021). Plant NIGT1/HRS1/HHO transcription factors: Key regulators with multiple roles in plant growth, development, and stress responses. International Journal of Molecular Sciences, 22(16), 8685. https://doi.org/10.3390/ijms22168685Search in Google Scholar
Li, X., Wang, Q., Guo, C., Sun, J., Li, Z., Wang, Y., Yang, A., Pu, W., Guo, Y., Gao, J., & Wen, L. (2022). NtNAC053, a novel NAC transcription factor, confers drought and salt tolerances in tobacco. Frontiers in Plant Science, 13, 817106. https://doi.org/10.3389/fpls.2022.817106Search in Google Scholar
Liu, X., Zong, X., Wu, X., Liu, H., Han, J., Yao, Z., Ren, Y., Ma, L., Wang, B., & Zhang, H. (2022). Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. Planta, 256(6), 105. https://doi.org/10.1007/s00425-022-04021-ySearch in Google Scholar
Ma, W-H., Kang, X., Liu, P., She, K-X., Zhang, Y-Y., Lin, X-R., Li, B., & Chen, Z-Z. (2022). The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. Horticulture Research, 9, uhab046. https://doi.org/10.1093/hr/uhab046Search in Google Scholar
Mao, H., Li, S-M., Chen, B., Jian, C., Mei, F-M., Zhang, Y-F., Li, F-F., Chen, N., Li, T., Du, L-Y., Ding, L., Wang, Z-X., Cheng, X-X., Wang, X-J., & Kang, Z-S. (2022). Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, 15(2), 276–292. https://doi.org/10.1016/j.molp.2021.11.007Search in Google Scholar
Meng, L., Yang, H., Xiang, L., Wang, Y., & Chan, Z. (2022). NAC transcription factor TgNAP promotes tulip petal senescence. Plant Physiology, 190(3), 1960–1977. https://doi.org/10.1093/plphys/kiac351Search in Google Scholar
Mijiti, M., Wang, Y., Wang, L., & Habuding, X. (2022). Tamarix hispida NAC transcription factor ThNAC4 [sic] confers salt and drought stress tolerance to transgenic Tamarix and Arabidopsis. Plants, 11(19), 2647. https://doi.org/10.3390/plants11192647Search in Google Scholar
Ng, D.W.-K., Abeysinghe, J.K., & Kamali, M. (2018). Regulating the regulators: The control of transcription factors in plant defense signaling. International Journal of Molecular Sciences, 19(12), 3737. https://doi.org/10.3390/ijms19123737Search in Google Scholar
Niu, X-L., & Fu, D-Q. (2022). The Roles of BLH transcription factors in plant development and environmental response. International Journal of Molecular Sciences, 23(7), 3731. https://doi.org/10.3390/ijms23073731Search in Google Scholar
Peng, H., Phung, J., Stowe, E. C., Dhingra, A., & Neff, M. M. (2022). The NAC transcription factor ATAF2 promotes ethylene biosynthesis and response in Arabidopsis thaliana seedlings. FEBS Letters, 596(12), 1586–1599. https://doi.org/10.1002/1873-3468.14317Search in Google Scholar
PlantRegMap (2024). PlantRegMap/PlantTFDB v5.0. Plant Transcription Factor Database. http://planttfdb.gaolab.org/help_famschema.php (last accessed: 25 July 2024)Search in Google Scholar
PubMed (2024). Plants NAC. https://pubmed.ncbi.nlm.nih.gov/?term=plants+NAC (last access: 25 July 2024)Search in Google Scholar
Romani, F., & Moreno, J. E. (2021). Molecular mechanisms involved in functional macroevolution of plant transcription factors. New Phytologist, 230(4), 1345–1353. https://doi.org/10.1111/nph.17161Search in Google Scholar
Roy, D., & Sadanandom, A. (2021). SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cellular and Molecular Life Sciences, 78(6), 2641–2664. https://doi.org/10.1007/s00018-020-03723-4Search in Google Scholar
Salaün, C., Lepiniec, L., & Dubreucq, B. (2021). Genetic and molecular control of somatic embryogenesis. Plants, 10(7), 1467. https://doi.org/10.3390/plants10071467Search in Google Scholar
Tao, Y., Wan, J. X., Liu, Y. S., Yang, X. Z., Shen, R. F., & Zhu, X. F. (2022). The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes. Plant Physiology, 189(4), 2517–2534. https://doi.org/10.1093/plphys/kiac197Search in Google Scholar
Teixeira da Silva, J. A. (2016a). In defense of the use of italic for Latin binomial plant names. Polish Botanical Journal, 61(1), 1–6. https://doi.org/10.1515/pbj-2016-0014Search in Google Scholar
Teixeira da Silva, J. A. (2016b). An error is an error… is an erratum. The ethics of not correcting errors in the science literature. Publishing Research Quarterly, 32(3), 220–226. https://doi.org/10.1007/s12109-016-9469-0Search in Google Scholar
Teixeira da Silva, J. A. (2020). Chinese names in the biomedical literature: Suggested bibliometric standardization. Publishing Research Quarterly, 36(2), 254–257. https://doi.org/10.1007/s12109-020-09725-1Search in Google Scholar
Teixeira da Silva, J. A. (2023). Is the validity, credibility and reliability of literature indexed in PubMed at risk? Medical Journal Armed Forces India, 79(5), 601–602. https://doi.org/10.1016/j.mjafi.2021.03.009Search in Google Scholar
Teixeira da Silva, J. A. (2022). A synthesis of the formats for correcting erroneous and fraudulent academic literature, and associated challenges. Journal for General Philosophy of Science, 53(4), 583–599. https://doi.org/10.1007/s10838-022-09607-4Search in Google Scholar
Teixeira da Silva, J. A., Bornemann-Cimenti, H., Daly, T., & Türp, J. C. (2024). Beyond disclaimers: The need for a curation-based model of PubMed. Current Medical Research & Opinion, 40(6), 1039–1045. https://doi.org/10.1080/03007995.2024.2350612Search in Google Scholar
Teixeira da Silva, J. A., & Nazarovets, S. (2022). Publication history: A double DOI-based method to store and/or monitor information about published and corrected academic literature. Journal of Scholarly Publishing, 53(2), 85–108. https://doi.org/10.3138/jsp.53.2.2017-0017Search in Google Scholar
Tian, F., Yang, D-C., Meng, Y-Q., Jin, J-P., & Gao, G. (2020). PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Research, 48(D1), D1104–D1113. https://doi.org/10.1093/nar/gkz1020Search in Google Scholar
Valoroso, M. C., Lucibelli, F., & Aceto, S. (2022). Orchid NAC transcription factors: A focused analysis of CUPULIFORMIS genes. Genes, 13(12), 2293. https://doi.org/10.3390/genes13122293Search in Google Scholar
Vargas-Hernández, B. Y., Núñez-Muñoz, L., Calderón-Pérez, B., Xoconostle-Cázares, B., & Ruiz-Medrano, R. (2022). The NAC transcription factor ANAC087 [sic] induces aerial rosette development and leaf senescence in Arabidopsis. Frontiers in Plant Science, 13, 818107. https://doi.org/10.3389/fpls.2022.818107Search in Google Scholar
Wang, M., Ren, L. T., Wei, X. Y., Ling, Y. M., Gu, H. T., Wang, S. S., Ma, X. F., & Kong, G. C. (2022). NAC transcription factor TwNAC01 [sic] positively regulates drought stress responses in Arabidopsis and Triticale. Frontiers in Plant Science, 13, 877016. https://doi.org/10.3389/fpls.2022.877016Search in Google Scholar
Wang, P-T., Xu, X., Tang, Z., Zhang, W-W., Huang, X-Y., & Zhao, F-J. (2018). OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Frontiers in Plant Science, 9, 1330. https://doi.org/10.3389/fpls.2018.01330Search in Google Scholar
Wang, X-P., Niu, Y-L., & Zheng, Y. (2021). Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences, 22(11), 6125. https://doi.org/10.3390/ijms22116125Search in Google Scholar
Wang, Y., Cui, Y., Liu, B., Wang, Y., Sun, S., Wang, J., Tan, M., Yan, H., & Zhang, Y. (2022). Lilium pumilum stress-responsive NAC transcription factor LpNAC17 [sic] enhances salt stress tolerance in tobacco. Frontiers in Plant Science, 13, 993841. https://doi.org/10.3389/fpls.2022.993841Search in Google Scholar
Wani, S. H., Anand, S., Singh, B., Bohra, A., & Joshi, R. (2021). WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Reports, 40(7), 1071–1085. https://doi.org/10.1007/s00299-021-02691-8Search in Google Scholar
Xiao, R-X., Zhang, C., Guo, X-R., Li, H., & Lu, H. (2021). MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. International Journal of Molecular Sciences, 22(7), 3560. https://doi.org/10.3390/ijms22073560Search in Google Scholar
Xu, P-P., Ma, W., Hu, J-B., & Cai, W-M. (2022). The nitrateinducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in Arabidopsis thaliana. PLoS Genetics, 18(3), e1010090. https://doi.org/10.1371/journal.pgen.1010090Search in Google Scholar
Yang, C., Huang, Y., Lv, P., Antwi-Boasiako, A., Begum, N., Zhao, T., & Zhao, J. (2022). NAC transcription factor GmNAC12 [sic] improved drought stress tolerance in soybean. International Journal of Molecular Sciences, 23(19), 12029. https://doi.org/10.3390/ijms231912029Search in Google Scholar
Yang, Y-H., Liu, X., Zhang, W-B., Qian, Q., Zhou, L-M., Liu, S., Li, Y-G., & Hou, X-L. (2021). Stress response proteins NRP1 and NRP2 are pro-survival factors that inhibit cell death during ER stress. Plant Physiology, 187(3), 1414–1427. https://doi.org/10.1093/plphys/kiab335Search in Google Scholar
Yoon, Y-D., Seo, D-H., Shin, H-Y., Kim, H-J., Kim, C-M., & Jang, G-P. (2020). The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 10(6), 788. https://doi.org/10.3390/agronomy10060788Search in Google Scholar
Yu, C-Y., Cho, Y., Sharma, O., & Kanehara, K. (2022). What’s unique? The unfolded protein response in plants. Journal of Experimental Botany, 73(5), 1268–1276. https://doi.org/10.1093/jxb/erab513Search in Google Scholar
Yu, G., Xie, Z., Lei, S., Li, H., Xu, B., & Huang, B. (2022). The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiology, 189(2), 595–610. https://doi.org/10.1093/plphys/kiac070Search in Google Scholar
Zhang, J-C., Mei, H., Lu, H-J., Chen, R., Hu, Y., & Zhang, T-Z. (2022). Transcriptome time-course analysis in the whole period of cotton fiber development. Frontiers in Plant Science, 13, 864529. https://doi.org/10.3389/fpls.2022.864529Search in Google Scholar
Zhang, X., Li, L., Lang, Z., Li, D., He, Y., Zhao, Y., Tao, H., Wei, J., Li, Q., & Hong, G. (2022). Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. Frontiers in Plant Science, 13, 1065261. https://doi.org/10.3389/fpls.2022.1065261Search in Google Scholar