1. bookVolume 12 (2019): Edizione 1 (September 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2343-8908
Prima pubblicazione
30 Sep 2018
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Characterization of Novel 8T SRAM with Low Leakage and Optimized Area

Pubblicato online: 11 Oct 2019
Volume & Edizione: Volume 12 (2019) - Edizione 1 (September 2019)
Pagine: 29 - 36
Dettagli della rivista
License
Formato
Rivista
eISSN
2343-8908
Prima pubblicazione
30 Sep 2018
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

[1] S. Robert, Technological innovation in the semiconductor industry: a case study of the International Technology Roadmap for Semiconductors (ITRS). Diss. George Mason University, 2004.Search in Google Scholar

[2] A. Paridhi, and S. Dasgupta, “A Comparative Study of 6T, 8T and 9T Decanano SRAM cell.” Industrial Electronics & Applications, 2009. ISIEA 2009. IEEE Symposium on. Vol. 2. IEEE, 2009.Search in Google Scholar

[3] A. Asen, A. R. Brown, J. H. Davies, S. Kaya, and G. Slavcheva. “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs.” IEEE transactions on electron devices 50, no. 9 (2003): 1837-1852.10.1109/TED.2003.815862Search in Google Scholar

[4] M. Tomohisa, J. Okumtura, and A. Toriumi. “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s.” IEEE Transactions on Electron Devices 41, no. 11 (1994): 2216-2221.10.1109/16.333844Search in Google Scholar

[5] G. F. Cardinale, et al. “Demonstration of pattern transfer into sub-100 nm polysilicon line/space features patterned with extreme ultraviolet lithography.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 17.6 (1999): 2970-2974.10.1116/1.590936Apri DOISearch in Google Scholar

[6] J. Singh, D. K. Pradhan, S. Hollis, &, S. P. Mohanty (2008), “A single ended 6T SRAM cell design for ultra-low-voltage applications”. IEICE Electronics Express, 5(18), 750-755.10.1587/elex.5.750Search in Google Scholar

[7] H. Mizuno, & T. Nagano, (1996). “Driving source-line cell architecture for sub-1-V high-speed low-power applications”. IEICE transactions on electronics, 79(7), 963-968.Search in Google Scholar

[8] Z. Bo, et al. “A Sub-200mV 6T SRAM in 0.13um CMOS in Solid-State Circuits Conference,” 2007. ISSCC 2007. Digest of Technical Papers. IEEE International. 2007.Search in Google Scholar

[9] A. Touqeer, B. Cheng, and D.R. Cumming. “Variability resilient low-power 7T-SRAM design for nano-scaled technologies.” Quality Electronic Design (ISQED), 2010 11th International Symposium on. IEEE, 2010.Search in Google Scholar

[10] K. F. Sharif, R. Islam, M. Haque. M. A. Keka, & S. N. Biswas, (2017, February). “7T SRAM based memory cell”. In Innovative Mechanisms for Industry Applications (ICIMIA), 2017 International Conference on (pp. 191-194). IEEE.10.1109/ICIMIA.2017.7975599Search in Google Scholar

[11] M. Moghaddam, M. H. Moaiyeri, & M. Eshghi, (2015, May). “Ultra low-power 7T SRAM cell design based on CMOS”. In Electrical Engineering (ICEE), 2015 23rd Iranian Conference on (pp. 1357-1361). IEEE.10.1109/IranianCEE.2015.7146428Search in Google Scholar

[12] P. Macken, M. Degrauwe, M. Van Paemel, &, H. Oguey (1990, February). “A voltage reduction technique for digital systems”. In Solid-State Circuits Conference, 1990. Digest of Technical Papers. 37th ISSCC, 1990 IEEE International (pp. 238-239). IEEE.10.1109/ISSCC.1990.110213Search in Google Scholar

[13] R. Gupta, &, S, Dasgupta. (2017). “Process Corners Analysis of Data Retention Voltage (DRV) for 6T, 8T, and 10T SRAM Cells at 45 nm”. IETE Journal of Research, 1-6.Search in Google Scholar

[14] Anh-Tuan, Do, et al. “An 8T differential SRAM with improved noise margin for bit-interleaving in 65 nm CMOS.” IEEE Transactions on Circuits and Systems I: Regular Papers 58.6 (2011): 1252-1263.10.1109/TCSI.2010.2103154Search in Google Scholar

[15] M. Yabuuchi, K. Nii, Y Tsukamoto, S. Ohbayashi, Y. Nakase, & H. Shinohara, (2009, June). “A 45nm 0.6 V cross-point 8T SRAM with negative biased read/write assist.” In VLSI Circuits, 2009 Symposium on (pp. 158-159). IEEE.Search in Google Scholar

[16] http://ptm.asu.eduSearch in Google Scholar

[17] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, “Digital Integrated Circuits: A Design Perspective”, 2nd ed. New Delhi, India: Prentice-Hall, 2005.Search in Google Scholar

[18] P. Raikwal, V. Neema, & A. Verma, (2017, April). “High speed 8T SRAM cell design with improved read stability at 180nm technology”. In Electronics, Communication and Aerospace Technology (ICECA), 2017 International conference of (Vol. 2, pp. 563-568). IEEE.10.1109/ICECA.2017.8212727Search in Google Scholar

[19] K. F. Sharif, R. Islam, S. N. Biswas, & V. Groza. (2017, April). “4 Transistor and 2 memristor based memory”. In Computer Applications & Industrial Electronics (ISCAIE), 2017 IEEE Symposium on (pp. 37-40). IEEE.10.1109/ISCAIE.2017.8074946Search in Google Scholar

[20] C. Benton and A. P. Chandrakasan. “Static noise margin variation for sub-threshold SRAM in 65-nm CMOS.” IEEE Journal of solid-state circuits 41.7 (2006): 1673-1679.10.1109/JSSC.2006.873215Search in Google Scholar

[21] K. F. Sharif, R. Islam, M. Haque, S. N. Biswas, V. Groza, & M. Assaf, (2017, February). “Low power nMOS based memory cell”. In Innovative Mechanisms for Industry Applications (ICIMIA), 2017 International Conference on (pp. 186-190). IEEE10.1109/ICIMIA.2017.7975598Search in Google Scholar

[22] K.F. Sharif, R. Islam and S.N. Biswas, “Low Power Novel 10T SRAM with Stabled Optimized Area.” In 2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 21-24. IEEE, 2018.10.1109/WIECON-ECE.2018.8783036Search in Google Scholar

[23] E. Seevinck, F. List, J. Lohstroh, “Static noise margin analysis of MOS SRAM cells”, IEEE J. Solid-State Circuits, vol. SC-22, no. 5, pp. 748-754, Oct. 1987.10.1109/JSSC.1987.1052809Search in Google Scholar

[24] K.F. Sharif, R. Islam and S.N. Biswas, “A New Model of High Speed 7T SRAM Cell”. In 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2) (pp. 1-4). IEEE. 2018, February10.1109/IC4ME2.2018.8465611Search in Google Scholar

[25] A. Islam, and M. Hasan. “A technique to mitigate impact of process, voltage and temperature variations on design metrics of SRAM Cell.” Microelectronics Reliability 52.2 (2012): 405-411.10.1016/j.microrel.2011.09.034Search in Google Scholar

[26] C. Binjie, et al. “Impact of intrinsic parameter fluctuations in decanano MOSFETs on yield and functionality of SRAM cells.” Solid-State Electronics 49.5 (2005): 740-746.10.1016/j.sse.2004.09.005Search in Google Scholar

[27] S. Abhijit, S. Ghosh, and M. Bayoumi. “A novel 90nm 8T SRAM cell with enhanced stability.” Integrated Circuit Design and Technology, 2007. ICICDT’07. IEEE International Conference on. IEEE, 2007.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo