[
1. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, et al. Mitochondrial metabolism in cancer metastasis. Visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012;11(7):1445-54.10.4161/cc.19841335088122395432
]Search in Google Scholar
[
2. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532-5.10.1038/3502010610952316
]Search in Google Scholar
[
3. Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer. 2003;2:23.10.1186/1476-4598-2-2315563812740039
]Search in Google Scholar
[
4. Colpaert CG, Vermeulen PB, Fox SB, Harris AL, Dirix LY, Van Marck EA. The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat. 2003;81:137-47.10.1023/A:1025702330207
]Search in Google Scholar
[
5. Déry MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37:535-40.10.1016/j.biocel.2004.08.01215618010
]Search in Google Scholar
[
6. Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of electrons with DNA: Radiation damage to radiosensitization. Int J Mol Sci. 2019;20(16):3998.10.3390/ijms20163998672016631426385
]Search in Google Scholar
[
7. Krajewski P. Teaching material for the Faculty of Physics at the Warsaw University of Technology as part of the lecture block entitled “Fundamentals of Nuclear Safety and Radiological Protection”. Warsaw; 2009. [http://www.if.pw.edu.pl/~pluta/pl/dyd/POKL33/pdf/matwykl/Biologiczne_skutki_promieniowania_jonizujacego.pdf] (accessed 23 August 2019).
]Search in Google Scholar
[
8. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49: 24S-42S.10.2967/jnumed.107.047258
]Search in Google Scholar
[
9. Sun H, Chen L, Cao S, Liang Y, Xu Y. Warburg effects in cancer and normal proliferating cells: two tales of the same name. GPB. 2020;17:273-86.10.1016/j.gpb.2018.12.006
]Search in Google Scholar
[
10. Miglioretti DL, Lange J, van den Broek JJ, Lee CI, van Ravesteyn NT, Ritley D, et al. Radiation-induced breast cancer incidence and mortality from digital mammography screening. A modeling study. Ann Intern Med. 2016;164:5-14.10.7326/M15-1241487844526756460
]Search in Google Scholar
[
11. Vaquero JJ, Kinahan P. Positron Emission Tomography: Current challenges and opportunities for technological advances in Clinical and Preclinical Imaging Systems. Annu Rev Biomed Eng. 2015; 17:385-414.10.1146/annurev-bioeng-071114-040723529909526643024
]Search in Google Scholar
[
12. Miele E, Spinelli GP, Tomao F, Zullo A, De Marinis F, Pasciuti G, et al. Positron Emission Tomography (PET) radiotracers in oncology – utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2008;27(1):52.10.1186/1756-9966-27-52257991018928537
]Search in Google Scholar
[
13. Liberti MV, Locasale JW. The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211-8.10.1016/j.tibs.2015.12.001478322426778478
]Search in Google Scholar
[
14. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans. 2016;44(5):1499-505.10.1042/BST20160094509592227911732
]Search in Google Scholar
[
15. Alfarouk KO, Ibrahim ME, Gatenby RA, Brown JS. Riparian ecosystems in human cancers. Evol App. 2013;1:46-53.10.1111/eva.12015356747023396634
]Search in Google Scholar
[
16. Alfarouk KO, Muddathir AK, Shayoub ME. Tumor Acidity as Evolutionary Spite. Cancers. 2011;3:408-14.10.3390/cancers3010408375636824310355
]Search in Google Scholar
[
17. Fang JS, Gillies RD, Gatenby RA. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol. 2007;18:330-7.10.1016/j.semcancer.2008.03.011295371418455429
]Search in Google Scholar
[
18. Gatenby RA, Gillies RJ. Why cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891-9.10.1038/nrc1478
]Search in Google Scholar
[
19. Medicine & Healthcare Products Regulatory Agency. Public Assessment Report Mutual Recognition Procedure, Meta Trace FDG Solution for Injection 3000MBq/ml Fludeoxyglucose 18F. Procedure No: UK/H/2656/001/MR. UK Licence No: PL 45366/0001. Simence Healthcare Limited. [http://www.mhra.gov.uk/home/groups/par/documents/websiteresources/con2033925.pdf] (accessed 17 July 2019).
]Search in Google Scholar
[
20. Vali R, Loidl W, Pirich C, Langesteger W, Beheshti M. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine. Am J Nucl Med Mol Imaging. 2015;5(2):96-108.
]Search in Google Scholar
[
21. Hara T, Kosaka N, Kishi H. Development of 18F-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187-99.
]Search in Google Scholar
[
22. Zhu A, Lee D, Shim H. Metabolic PET imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55-69.10.1053/j.seminoncol.2010.11.012307549521362516
]Search in Google Scholar
[
23. Ots PS, Cardo LA, Ocana VC, Rodríguez CMA, Enríquez GLA, Paniagua CML, et al. Diagnostic performance of 18 F-choline PET-CT in prostate Cancer. Clin Traans Onkol. 2019;21(6):766-73.10.1007/s12094-018-1985-230448957
]Search in Google Scholar
[
24. Quinn B, Holahan B, Aime J, Humm J, St Germain J, Dauer LT. Measured dose rate constant from oncology patients administered 18F for positron emission tomography. Med Phys. 2012;39:6071-9.10.1118/1.474996623039646
]Search in Google Scholar
[
25. Kohanoff J, Artacho E. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics. PLoS One. 2017;12(3):e0171820.10.1371/journal.pone.0171820
]Search in Google Scholar
[
26. Le Caër S. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235-53.10.3390/w3010235
]Search in Google Scholar
[
27. Maddalena F, Lettini G, Gallicchio R, Sisinni L, Simeon V, Nardelli A, et al. Evaluation of glucose uptake in normal and cancer cell lines by Positron Emission Tomography. Mol Imaging. 2015;14:490-8.10.2310/7290.2015.00021
]Search in Google Scholar
[
28. Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011;71(15):5164-74.10.1158/0008-5472.CAN-10-4633314832521646475
]Search in Google Scholar
[
29. Espinoza I, Sakiyama MJ, Ma T, Fair L, Zhou X, Hassan M et al. Hypoxia on the expression of hepatoma upregulated protein in prostate cancer cells. Front Oncol. 2016;6:144.10.3389/fonc.2016.00144490813427379206
]Search in Google Scholar
[
30. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191-201.10.1016/j.drup.2011.03.00121466972
]Search in Google Scholar
[
31. Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis. 2008;25(4):411-25.10.1007/s10585-008-9145-718301995
]Search in Google Scholar
[
32. Ahmadi M, Ahmadihosseini Z, Allison SJ, Begum S, Rockley K, Sadiq M, et al. Hypoxia modulates the activity of a series of clinically approved tyrosine kinase inhibitors. Br J Pharmacol. 2013;Oct 4. doi: 10.1111/bph.12438387470924117380
]Apri DOISearch in Google Scholar
[
33. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;(7):670-5.10.1097/00004728-198012000-00045
]Search in Google Scholar
[
34. Silberstein EB. Prevalence of adverse reactions to Positron Emitting Radiopharmaceuticals in nuclear medicine. J Nucl Med. 1998;39: 2190-2.
]Search in Google Scholar
[
35. Hamada N, Fujimichi Y. Classification of radiation effects for dose limitation purposes: History, current situation and future prospects. J Radiat Res. 2014;55(4):629-40.10.1093/jrr/rru019410001024794798
]Search in Google Scholar
[
36. Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019; 11(11):1789.10.3390/cancers11111789689598731739493
]Search in Google Scholar
[
37. Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon ion therapy: A modern review of an emerging technology. Front Oncol. 2020;10:82.10.3389/fonc.2020.00082701091132117737
]Search in Google Scholar
[
38. Woloschak GE. Astro radiation and cancer biology study guide by radiation and cancer biology study guide task force. PP 140. World Cancer Research Fund International; 2012. [http://www.wcrf.org/int/cancer-facts-figures/worldwide-data] (accessed 03 November 2019).
]Search in Google Scholar
[
39. Ferradini C, Jay-Gerin JP. La radiolyse de l‘eau et des solutions aqueuses: historique et actualité. Can J Chem. 1999;77:1542-75.10.1139/v99-162
]Search in Google Scholar
[
40. Hall EJ, Hei TK. Genomic instability and bystander effects induced by high-LET radiation. Oncogene. 2003;22:7034-42.10.1038/sj.onc.120690014557808
]Search in Google Scholar
[
41. McDevitt MR, Sgouros G, Sofou S. Targeted and nontargeted α-Particle Therapies. Annu Rev Biomed Eng. 2018;20:73-93.10.1146/annurev-bioeng-062117-120931598895629345977
]Search in Google Scholar
[
42. Baskar R. Emerging role of radiation induced bystander effects: Cell communicatons and carcinogenesis. Genome Integr. 2010;1:13.10.1186/2041-9414-1-13294971420831828
]Search in Google Scholar
[
43. Prise KM, O’Sullivan J.M. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9:351-60.10.1038/nrc2603285595419377507
]Search in Google Scholar
[
44. Ilnytsky Y. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue specific manner. Environ Mol Mutagen. 2009;50:105-13.10.1002/em.2044019107897
]Search in Google Scholar
[
45. Travis LB, Hodgson D, Allan JM, Van Leeuwen FE. Second cancers. In: DeVita VT Jr, Lawrence TS, Rosenberg SA (eds). Cancer: Principles and practice of Oncology. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2008.
]Search in Google Scholar
[
46. Haidl F, Pfister D, Semrau R, Heidenreich A. Second neoplasms after percutaneous radiotherapy. Urologe A. 2017;56(3):342-50.10.1007/s00120-016-0277-027844130
]Search in Google Scholar
[
47. Sountoulides P. Secondary malignancies following radiotherapy for prostate cancer. Ther Adv Urol. 2010;2(3):119-25.10.1177/1756287210374462312609021789089
]Search in Google Scholar
[
48. Morton LM. Risk of treatment-related esophageal cancer among breast cancer survivors. Ann Oncol. 2012;23(12):3081-91.10.1093/annonc/mds144350123122745217
]Search in Google Scholar
[
49. Roychoudhuri R, Evans H, Robinson D, Moller H. Radiation-induced malignancies following radiotherapy for breast cancer. Br J Cancer. 2004;91:868-72.10.1038/sj.bjc.6602084240987715292931
]Search in Google Scholar
[
50. Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. BJR. 2012;85:313-30.10.1259/bjr/16386034348666522294702
]Search in Google Scholar
[
51. Golfier S, Jost G, Pietsch H, Lengsfeld P, Eckardt-Schupp F, Schmid E, et al. Dicentric chromosomes and gamma-H2AX foci formation in lymphocytes of human blood samples exposed to a CT scanner: a direct comparison of dose response relationships. Radiat Prot Dosimetry. 2009;134:55-61.10.1093/rpd/ncp06119369288
]Search in Google Scholar
[
52. Kempf SJ, Moertl S, Sepe S, von Toerne C, Hauck SM, Atkinson MJ et al. Low-dose ionizing radiation rapidly affects mitochondrial and synaptic signaling pathways in murine hippocampus and cortex. J Proteome Res. 2015;14(5):2055-64.10.1021/acs.jproteome.5b0011425807253
]Search in Google Scholar
[
53. Welch MJ, Redvanly CS. Handbook of radiopharmaceuticals. Radiochemistry and applications: Production of radionuclides in accelerators. John Wiley & Sons Ltd.; 2003:42.10.1002/0470846380
]Search in Google Scholar
[
54. Taylor K, Lemon JA, Boreham DR. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Mutagenesis. 2014;29(4):279-87.10.1093/mutage/geu01624870562
]Search in Google Scholar
[
55. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Watabe H, Narita Y. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxyd-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eu J Nuclear Med. 1998;25(6):565-74.10.1007/s0025900502579618570
]Search in Google Scholar
[
56. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Yamadera A, Itoh M. Internal absorbed dose estimation by a TLD method for 18F-FDG and comparison with the dose estimates from whole body PET. Phys Med Biol. 1999;44:595-606.10.1088/0031-9155/44/2/02110070803
]Search in Google Scholar
[
57. Hays MT, Watson EE, Thomas SR, Stabin M. MIRD dose estimate report no. 19: radiation absorbed dose estimates from (18) F-FDG. J Nucl Med. 2002;43:210-4.
]Search in Google Scholar
[
58. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46: 608-13.
]Search in Google Scholar
[
59. Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18 fluorodeoxyglucose in PET studies. J Nucl Med. 1991;32:699-706.10.1269/jrr.32.243
]Search in Google Scholar
[
60. Khan N, Islam MM, Mahmood S, Hossain GA, Chakraborty RK. 18F-fluorodeoxyglucose uptake in tumor. Mymensingh Med J. 2011; 20(2):332-42.
]Search in Google Scholar
[
61. Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics. 2004;24:523-43.10.1148/rg.24202572415026598
]Search in Google Scholar
[
62. Yu S. Review of F-FDG synthesis and quality control. Biomed Imaging Interven. 2006;2:e57-e67.10.2349/biij.2.4.e57
]Search in Google Scholar
[
63. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254-63.10.1148/radiol.248107145118566177
]Search in Google Scholar
[
64. de Jong PA, Tiddens HA, Lequin MH, Robinson TE, Brody AS. Estimation of the radiation dose from CT in cystic fibrosis. Chest. 2008;133 (5):1289-91.10.1378/chest.07-284018460535
]Search in Google Scholar
[
65. Brehwens K, Staaf E, Haghdoost S, González AJ, Wojcik A. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiat Res. 2010;173:283-9.10.1667/RR2012.120199213
]Search in Google Scholar
[
66. Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem. 2004;279:49624-32.10.1074/jbc.M40960020015377658
]Search in Google Scholar
[
67. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia. 2000;2:71-88.10.1038/sj.neo.7900075153186810933070
]Search in Google Scholar
[
68. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279-87.
]Search in Google Scholar
[
69. Heyes GJ, Mill AJ, Charles MW. Mammography-oncogenecity at low doses. J Radiol Prot. 2009;29(2A):A123-32.10.1088/0952-4746/29/2A/S08
]Search in Google Scholar
[
70. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-92.10.1056/NEJMoa1113205
]Search in Google Scholar
[
71. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nature Rev Cancer. 2008;8:967-75.10.1038/nrc2540
]Search in Google Scholar
[
72. Vaupel P, Mayer A, Höckel M. Tumour hypoxia and malignant progression. Methods Enzymol. 2004;381:335-54.10.1016/S0076-6879(04)81023-1
]Search in Google Scholar
[
73. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Rev Cancer. 2014;14: 430-9.10.1038/nrc3726
]Search in Google Scholar
[
74. Raghunand N, Mahoney BP, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol. 2003;66:1219-29.10.1016/S0006-2952(03)00468-4
]Search in Google Scholar
[
75. Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032-8.10.1021/mp200292c323068321981633
]Search in Google Scholar