1. bookVolume 35 (2022): Edizione 1 (July 2022)
Dettagli della rivista
Prima pubblicazione
30 May 2014
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

The risk of increasing tumor malignancy after PET diagnosis

Pubblicato online: 28 Jul 2022
Volume & Edizione: Volume 35 (2022) - Edizione 1 (July 2022)
Pagine: 34 - 40
Ricevuto: 15 Jun 2021
Accettato: 12 Dec 2021
Dettagli della rivista
Prima pubblicazione
30 May 2014
Frequenza di pubblicazione
4 volte all'anno

1. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, et al. Mitochondrial metabolism in cancer metastasis. Visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012;11(7):1445-54.10.4161/cc.19841335088122395432 Search in Google Scholar

2. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532-5.10.1038/3502010610952316 Search in Google Scholar

3. Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer. 2003;2:23.10.1186/1476-4598-2-2315563812740039 Search in Google Scholar

4. Colpaert CG, Vermeulen PB, Fox SB, Harris AL, Dirix LY, Van Marck EA. The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat. 2003;81:137-47.10.1023/A:1025702330207 Search in Google Scholar

5. Déry MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37:535-40.10.1016/j.biocel.2004.08.01215618010 Search in Google Scholar

6. Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of electrons with DNA: Radiation damage to radiosensitization. Int J Mol Sci. 2019;20(16):3998.10.3390/ijms20163998672016631426385 Search in Google Scholar

7. Krajewski P. Teaching material for the Faculty of Physics at the Warsaw University of Technology as part of the lecture block entitledFundamentals of Nuclear Safety and Radiological Protection”. Warsaw; 2009. [http://www.if.pw.edu.pl/~pluta/pl/dyd/POKL33/pdf/matwykl/Biologiczne_skutki_promieniowania_jonizujacego.pdf] (accessed 23 August 2019). Search in Google Scholar

8. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49: 24S-42S.10.2967/jnumed.107.047258 Search in Google Scholar

9. Sun H, Chen L, Cao S, Liang Y, Xu Y. Warburg effects in cancer and normal proliferating cells: two tales of the same name. GPB. 2020;17:273-86.10.1016/j.gpb.2018.12.006 Search in Google Scholar

10. Miglioretti DL, Lange J, van den Broek JJ, Lee CI, van Ravesteyn NT, Ritley D, et al. Radiation-induced breast cancer incidence and mortality from digital mammography screening. A modeling study. Ann Intern Med. 2016;164:5-14.10.7326/M15-1241487844526756460 Search in Google Scholar

11. Vaquero JJ, Kinahan P. Positron Emission Tomography: Current challenges and opportunities for technological advances in Clinical and Preclinical Imaging Systems. Annu Rev Biomed Eng. 2015; 17:385-414.10.1146/annurev-bioeng-071114-040723529909526643024 Search in Google Scholar

12. Miele E, Spinelli GP, Tomao F, Zullo A, De Marinis F, Pasciuti G, et al. Positron Emission Tomography (PET) radiotracers in oncology – utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2008;27(1):52.10.1186/1756-9966-27-52257991018928537 Search in Google Scholar

13. Liberti MV, Locasale JW. The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211-8.10.1016/j.tibs.2015.12.001478322426778478 Search in Google Scholar

14. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans. 2016;44(5):1499-505.10.1042/BST20160094509592227911732 Search in Google Scholar

15. Alfarouk KO, Ibrahim ME, Gatenby RA, Brown JS. Riparian ecosystems in human cancers. Evol App. 2013;1:46-53.10.1111/eva.12015356747023396634 Search in Google Scholar

16. Alfarouk KO, Muddathir AK, Shayoub ME. Tumor Acidity as Evolutionary Spite. Cancers. 2011;3:408-14.10.3390/cancers3010408375636824310355 Search in Google Scholar

17. Fang JS, Gillies RD, Gatenby RA. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol. 2007;18:330-7.10.1016/j.semcancer.2008.03.011295371418455429 Search in Google Scholar

18. Gatenby RA, Gillies RJ. Why cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891-9.10.1038/nrc1478 Search in Google Scholar

19. Medicine & Healthcare Products Regulatory Agency. Public Assessment Report Mutual Recognition Procedure, Meta Trace FDG Solution for Injection 3000MBq/ml Fludeoxyglucose 18F. Procedure No: UK/H/2656/001/MR. UK Licence No: PL 45366/0001. Simence Healthcare Limited. [http://www.mhra.gov.uk/home/groups/par/documents/websiteresources/con2033925.pdf] (accessed 17 July 2019). Search in Google Scholar

20. Vali R, Loidl W, Pirich C, Langesteger W, Beheshti M. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine. Am J Nucl Med Mol Imaging. 2015;5(2):96-108. Search in Google Scholar

21. Hara T, Kosaka N, Kishi H. Development of 18F-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187-99. Search in Google Scholar

22. Zhu A, Lee D, Shim H. Metabolic PET imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55-69.10.1053/j.seminoncol.2010.11.012307549521362516 Search in Google Scholar

23. Ots PS, Cardo LA, Ocana VC, Rodríguez CMA, Enríquez GLA, Paniagua CML, et al. Diagnostic performance of 18 F-choline PET-CT in prostate Cancer. Clin Traans Onkol. 2019;21(6):766-73.10.1007/s12094-018-1985-230448957 Search in Google Scholar

24. Quinn B, Holahan B, Aime J, Humm J, St Germain J, Dauer LT. Measured dose rate constant from oncology patients administered 18F for positron emission tomography. Med Phys. 2012;39:6071-9.10.1118/1.474996623039646 Search in Google Scholar

25. Kohanoff J, Artacho E. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics. PLoS One. 2017;12(3):e0171820.10.1371/journal.pone.0171820 Search in Google Scholar

26. Le Caër S. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235-53.10.3390/w3010235 Search in Google Scholar

27. Maddalena F, Lettini G, Gallicchio R, Sisinni L, Simeon V, Nardelli A, et al. Evaluation of glucose uptake in normal and cancer cell lines by Positron Emission Tomography. Mol Imaging. 2015;14:490-8.10.2310/7290.2015.00021 Search in Google Scholar

28. Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011;71(15):5164-74.10.1158/0008-5472.CAN-10-4633314832521646475 Search in Google Scholar

29. Espinoza I, Sakiyama MJ, Ma T, Fair L, Zhou X, Hassan M et al. Hypoxia on the expression of hepatoma upregulated protein in prostate cancer cells. Front Oncol. 2016;6:144.10.3389/fonc.2016.00144490813427379206 Search in Google Scholar

30. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191-201.10.1016/j.drup.2011.03.00121466972 Search in Google Scholar

31. Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis. 2008;25(4):411-25.10.1007/s10585-008-9145-718301995 Search in Google Scholar

32. Ahmadi M, Ahmadihosseini Z, Allison SJ, Begum S, Rockley K, Sadiq M, et al. Hypoxia modulates the activity of a series of clinically approved tyrosine kinase inhibitors. Br J Pharmacol. 2013;Oct 4. doi: 10.1111/bph.12438387470924117380 Apri DOISearch in Google Scholar

33. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;(7):670-5.10.1097/00004728-198012000-00045 Search in Google Scholar

34. Silberstein EB. Prevalence of adverse reactions to Positron Emitting Radiopharmaceuticals in nuclear medicine. J Nucl Med. 1998;39: 2190-2. Search in Google Scholar

35. Hamada N, Fujimichi Y. Classification of radiation effects for dose limitation purposes: History, current situation and future prospects. J Radiat Res. 2014;55(4):629-40.10.1093/jrr/rru019410001024794798 Search in Google Scholar

36. Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019; 11(11):1789.10.3390/cancers11111789689598731739493 Search in Google Scholar

37. Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon ion therapy: A modern review of an emerging technology. Front Oncol. 2020;10:82.10.3389/fonc.2020.00082701091132117737 Search in Google Scholar

38. Woloschak GE. Astro radiation and cancer biology study guide by radiation and cancer biology study guide task force. PP 140. World Cancer Research Fund International; 2012. [http://www.wcrf.org/int/cancer-facts-figures/worldwide-data] (accessed 03 November 2019). Search in Google Scholar

39. Ferradini C, Jay-Gerin JP. La radiolyse de l‘eau et des solutions aqueuses: historique et actualité. Can J Chem. 1999;77:1542-75.10.1139/v99-162 Search in Google Scholar

40. Hall EJ, Hei TK. Genomic instability and bystander effects induced by high-LET radiation. Oncogene. 2003;22:7034-42.10.1038/sj.onc.120690014557808 Search in Google Scholar

41. McDevitt MR, Sgouros G, Sofou S. Targeted and nontargeted α-Particle Therapies. Annu Rev Biomed Eng. 2018;20:73-93.10.1146/annurev-bioeng-062117-120931598895629345977 Search in Google Scholar

42. Baskar R. Emerging role of radiation induced bystander effects: Cell communicatons and carcinogenesis. Genome Integr. 2010;1:13.10.1186/2041-9414-1-13294971420831828 Search in Google Scholar

43. Prise KM, O’Sullivan J.M. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9:351-60.10.1038/nrc2603285595419377507 Search in Google Scholar

44. Ilnytsky Y. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue specific manner. Environ Mol Mutagen. 2009;50:105-13.10.1002/em.2044019107897 Search in Google Scholar

45. Travis LB, Hodgson D, Allan JM, Van Leeuwen FE. Second cancers. In: DeVita VT Jr, Lawrence TS, Rosenberg SA (eds). Cancer: Principles and practice of Oncology. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2008. Search in Google Scholar

46. Haidl F, Pfister D, Semrau R, Heidenreich A. Second neoplasms after percutaneous radiotherapy. Urologe A. 2017;56(3):342-50.10.1007/s00120-016-0277-027844130 Search in Google Scholar

47. Sountoulides P. Secondary malignancies following radiotherapy for prostate cancer. Ther Adv Urol. 2010;2(3):119-25.10.1177/1756287210374462312609021789089 Search in Google Scholar

48. Morton LM. Risk of treatment-related esophageal cancer among breast cancer survivors. Ann Oncol. 2012;23(12):3081-91.10.1093/annonc/mds144350123122745217 Search in Google Scholar

49. Roychoudhuri R, Evans H, Robinson D, Moller H. Radiation-induced malignancies following radiotherapy for breast cancer. Br J Cancer. 2004;91:868-72.10.1038/sj.bjc.6602084240987715292931 Search in Google Scholar

50. Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. BJR. 2012;85:313-30.10.1259/bjr/16386034348666522294702 Search in Google Scholar

51. Golfier S, Jost G, Pietsch H, Lengsfeld P, Eckardt-Schupp F, Schmid E, et al. Dicentric chromosomes and gamma-H2AX foci formation in lymphocytes of human blood samples exposed to a CT scanner: a direct comparison of dose response relationships. Radiat Prot Dosimetry. 2009;134:55-61.10.1093/rpd/ncp06119369288 Search in Google Scholar

52. Kempf SJ, Moertl S, Sepe S, von Toerne C, Hauck SM, Atkinson MJ et al. Low-dose ionizing radiation rapidly affects mitochondrial and synaptic signaling pathways in murine hippocampus and cortex. J Proteome Res. 2015;14(5):2055-64.10.1021/acs.jproteome.5b0011425807253 Search in Google Scholar

53. Welch MJ, Redvanly CS. Handbook of radiopharmaceuticals. Radiochemistry and applications: Production of radionuclides in accelerators. John Wiley & Sons Ltd.; 2003:42.10.1002/0470846380 Search in Google Scholar

54. Taylor K, Lemon JA, Boreham DR. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Mutagenesis. 2014;29(4):279-87.10.1093/mutage/geu01624870562 Search in Google Scholar

55. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Watabe H, Narita Y. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxyd-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eu J Nuclear Med. 1998;25(6):565-74.10.1007/s0025900502579618570 Search in Google Scholar

56. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Yamadera A, Itoh M. Internal absorbed dose estimation by a TLD method for 18F-FDG and comparison with the dose estimates from whole body PET. Phys Med Biol. 1999;44:595-606.10.1088/0031-9155/44/2/02110070803 Search in Google Scholar

57. Hays MT, Watson EE, Thomas SR, Stabin M. MIRD dose estimate report no. 19: radiation absorbed dose estimates from (18) F-FDG. J Nucl Med. 2002;43:210-4. Search in Google Scholar

58. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46: 608-13. Search in Google Scholar

59. Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18 fluorodeoxyglucose in PET studies. J Nucl Med. 1991;32:699-706.10.1269/jrr.32.243 Search in Google Scholar

60. Khan N, Islam MM, Mahmood S, Hossain GA, Chakraborty RK. 18F-fluorodeoxyglucose uptake in tumor. Mymensingh Med J. 2011; 20(2):332-42. Search in Google Scholar

61. Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics. 2004;24:523-43.10.1148/rg.24202572415026598 Search in Google Scholar

62. Yu S. Review of F-FDG synthesis and quality control. Biomed Imaging Interven. 2006;2:e57-e67.10.2349/biij.2.4.e57 Search in Google Scholar

63. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254-63.10.1148/radiol.248107145118566177 Search in Google Scholar

64. de Jong PA, Tiddens HA, Lequin MH, Robinson TE, Brody AS. Estimation of the radiation dose from CT in cystic fibrosis. Chest. 2008;133 (5):1289-91.10.1378/chest.07-284018460535 Search in Google Scholar

65. Brehwens K, Staaf E, Haghdoost S, González AJ, Wojcik A. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiat Res. 2010;173:283-9.10.1667/RR2012.120199213 Search in Google Scholar

66. Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem. 2004;279:49624-32.10.1074/jbc.M40960020015377658 Search in Google Scholar

67. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia. 2000;2:71-88.10.1038/sj.neo.7900075153186810933070 Search in Google Scholar

68. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279-87. Search in Google Scholar

69. Heyes GJ, Mill AJ, Charles MW. Mammography-oncogenecity at low doses. J Radiol Prot. 2009;29(2A):A123-32.10.1088/0952-4746/29/2A/S08 Search in Google Scholar

70. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-92.10.1056/NEJMoa1113205 Search in Google Scholar

71. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nature Rev Cancer. 2008;8:967-75.10.1038/nrc2540 Search in Google Scholar

72. Vaupel P, Mayer A, Höckel M. Tumour hypoxia and malignant progression. Methods Enzymol. 2004;381:335-54.10.1016/S0076-6879(04)81023-1 Search in Google Scholar

73. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Rev Cancer. 2014;14: 430-9.10.1038/nrc3726 Search in Google Scholar

74. Raghunand N, Mahoney BP, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol. 2003;66:1219-29.10.1016/S0006-2952(03)00468-4 Search in Google Scholar

75. Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032-8.10.1021/mp200292c323068321981633 Search in Google Scholar

Articoli consigliati da Trend MD