[
1. Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional Composition of Meat. In M. S. Arshad (Ed.), Meat Science and Nutrition. London: IntechOpen. Retrieved July 12, 2022, from: 10.5772/intechopen.77045.10.5772/intechopen.77045
]Search in Google Scholar
[
2. AOAC. (2005). Official method of Analysis (18th ed.)., Washington DC: Association of Officiating Analytical Chemists
]Search in Google Scholar
[
3. Barón, C. L. C., Santos-Donado, P. R., Ramos, P. M., Donado-Pestana, C. M., Delgado, E. F., & Contreras-Castillo, C. J. (2021). Influence of ultimate pH on biochemistry and quality of Longissimus lumborum steaks from Nellore bulls during ageing. International Journal of Food Science and Technology, 56, 3333–3343. DOI: 10.1111/ijfs.14955.
]Apri DOISearch in Google Scholar
[
4. Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Mattock, H., & Straif, K. (2015). International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and pro-cessed meat. Lancet Oncology, 16(16), 1599–600. DOI: 10.1016/S1470-2045(15)00444-1.26514947
]Apri DOISearch in Google Scholar
[
5. Briggs, M. A., Petersen, K. S., & Kris-Etherton, P. M. (2017). Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare, 5(2), 29. pii: E29. DOI: 10.3390/healthcare5020029.549203228635680
]Apri DOISearch in Google Scholar
[
6. Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Frontiers in Physiology, 8, Article 902. DOI: 10.3389/fphys.2017.00902.568233229167646
]Apri DOISearch in Google Scholar
[
7. Carta, G., Murru, E., Lisai, S., Sirigu, A., Pira, A., Collu, M., Batetta, B., Gambelli, L., & Banni, S. (2015). Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS ONE, 10(3), Article e0120424. DOI: 10.1371/journal.pone.0120424.436161125775474
]Apri DOISearch in Google Scholar
[
8. Chen, J., & Liu, H. (2020). Nutritional Indices for Assessing Fatty Acids: A Mini-Review. International Journal of Molecular Sciences, 21(16), Article 5695. DOI: 10.3390/ijms21165695.746085632784511
]Apri DOISearch in Google Scholar
[
9. Commission Internationale de L’Éclairage (CIE). (1978). Recommendations on Uniform Color Spaces-Color Difference Equations: Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.), 1971/(TC-1-3). Paris, France: CIE.
]Search in Google Scholar
[
10. Cordain, L., Watkins, B., Florant, G., Kelher, M., & Rogers, L., Li, Y. (2002). Fatty acid analysis of wild ruminant tissues: evolutionary implications for reducing diet-related chronic disease. European Journal of Clinical Nutrition, 56, 181–191. DOI: 10.1038/sj.ejcn.1601307.11960292
]Apri DOISearch in Google Scholar
[
11. Darwish, W. S., Ikenaka, Y., Morshdy, A. E., Eldesoky, K. I., Nakayama, S., Mizukawa, H., & Ishizuka, M. (2016). β-carotene and retinol contents in the meat of herbivorous ungulates with a special reference to their public health importance. Journal of Veterinary Medical Science, 78(2), 351–354. DOI: 10.1292/jvms.15-0287.478513426498400
]Apri DOISearch in Google Scholar
[
12. Daszkiewicz, T., Kubiak, D., Winarski, R., & Koba-Kowalczyk, M. (2012). The effect of gender on the quality of roe deer (Capreolus capreolus L.) meat. Small Ruminant Research, 103(2-3), 169–175. DOI: 10.1016/j.smallrumres.2011.09.044.
]Apri DOISearch in Google Scholar
[
13. Daszkiewicz, T., Murawska, D., Kubiak, D., & Han J. (2022). Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal. Animals, 12(4), 464. DOI: 10.3390/ani12040464.886838035203172
]Apri DOISearch in Google Scholar
[
14. De Smet, S., Raes, K., & Demeyer, D. (2004). Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research, 53(2), 81–98. DOI: 10.1051/animres:2004003.
]Apri DOISearch in Google Scholar
[
15. Demesko, J., Markowski, J., Demesko, E., Słaba, M., Hejduk, J., & Minias, P. (2019). Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus capreolus). Archives of Environmental Contamination and Toxicology, 76, 76–86. DOI: 10.1007/s00244-018-0580-4.632699530443665
]Apri DOISearch in Google Scholar
[
16. Demeyer, D., Mertens, B., De Smet, S., & Ulens, M. (2016). Mechanisms linking colorectal cancer to the consumption of (processed) red meat: a review. Critical Reviews in Food Science and Nutrition, 56: 2747–2766. DOI: 10.1080/10408398.2013.873886.25975275
]Apri DOISearch in Google Scholar
[
17. Dietschy, J. M. (1998). Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. Journal of Nutrition, 128(2), 444S–448S. DOI: 10.1093/jn/128.2.444S.9478045
]Apri DOISearch in Google Scholar
[
18. du Toit, E., & Oguttu, J. W. (2013). Calpain and Calpastatin Activity Post Mortem and Meat Tenderness: Are the Two Related? Journal of Animal and Veterinary Advances, 12, 683–688. DOI: 10.36478/javaa.2013.683.688.
]Apri DOISearch in Google Scholar
[
19. Guasch-Ferré, M., Zong, G., Willett, W. C., Zock, P. L., Wanders, A. J., Hu, F. B., & Sun, Q. (2019). Associations of Monounsaturated Fatty Acids From Plant and Animal Sources With Total and Cause-Specific Mortality in Two US Prospective Cohort Studies. Circulation Research, 124(8), 1266–1275. DOI: 10.1161/CIRCRESAHA.118.313996.645972330689516
]Apri DOISearch in Google Scholar
[
20. Hamm, R. (1956). Fleischmineralien und Fleischqualitt. Fleischwirtschaft, 5, 266–269.
]Search in Google Scholar
[
21. Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), Article 53. DOI: 10.3390/foods6070053.553256028726744
]Apri DOISearch in Google Scholar
[
22. Hoffman, L. C. (2001). The effect of different culling methodologies on the physical meat quality attributes of various game species. In H. Ebedes, B. Reilly, W. van Hoven, & B. Penzhorn (Eds.), Proceedings of the 5th international wildlife ranching symposium sustainable utilization – conservation in practice (pp. 212–221). Nelson Mandela Metropolitan University, Port Elizabeth.
]Search in Google Scholar
[
23. Hoffman, L. C., & Wiklund, E. (2006). Game and venison – meat for the modern consumer. Meat Science, 74(1), 197–208. DOI: 10.1016/j.meatsci.2006.04.005.22062729
]Apri DOISearch in Google Scholar
[
24. Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457. DOI: 10.1016/S0309-1740(98)00034-5.22060626
]Apri DOISearch in Google Scholar
[
25. Hutchison, C. L., Mulley, R. C., Wiklund, E., & Flesch, J. S. (2010). Consumer evaluation of venison sensory quality: Effects of sex, body condition score and carcase suspension method. Meat Science, 86, 311–316. DOI: 10.1016/j.meatsci.2010.04.031.20579815
]Apri DOISearch in Google Scholar
[
26. Ivanović, S., Pisinov, B., Pavlović, M., & Pavlović, I. (2020). Quality of Meat from Female Fallow Deer (Dama Dama) and Roe Deer (Capreolus Capreolus) Hunted in Serbia. Annals of Animal Science, 20(1), 245–262. DOI: 10.2478/aoas-2019-0064.
]Apri DOISearch in Google Scholar
[
27. Janík, T., Peters, W., Šálek, M., Romportl, D., Jirků, M., Engleder, T., Ernst, M., Neudert, J., & Heurich, M. (2021). The declining occurrence of moose (Alces alces) at the southernmost edge of its range raise conservation concerns. Ecology and Evolution, 11(10): 5468–5483. DOI: 10.1002/ece3.7441.813179334026021
]Apri DOISearch in Google Scholar
[
28. Jankowska, B., Żmijewski, T., Kwiatkowska, A., & Korzeniowski, W. (2005). The composition and properties of beaver (Castor fiber) meat. European Journal of Wildlife Research, 51, 283–286. DOI: 10.1007/s10344-005-0102-3.
]Apri DOISearch in Google Scholar
[
29. Jenkins, T. C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397–412. DOI: 10.2527/jas.2007-0588.18042812
]Apri DOISearch in Google Scholar
[
30. Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828–836. DOI: 10.1016/j.meatsci.2013.04.044.23702339
]Apri DOISearch in Google Scholar
[
31. Juárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods, 10(4), Article 872. DOI: 10.3390/foods10040872.807387833923499
]Apri DOISearch in Google Scholar
[
32. Kerry, J., Kerry, J., & Ledward, D. (2002). Meat processing. Improving quality (pp. 35–37). Abington, Cambridge, England: Woodhead Publishing Limited Abington Hall.10.1201/9781439823163
]Search in Google Scholar
[
33. Kim, G. -D., Jeong J. -Y., Jung E. -Y., Yang H. -S., Lim H. -T., & Joo S. -T. (2013). The influence of fiber size distribution of type IIB on carcass traits and meat quality in pigs. Meat Science, 94(2), 267–273. DOI: 10.1016/j.meatsci.2013.02.001.23523735
]Apri DOISearch in Google Scholar
[
34. Klont, R. E., Brocks, L., & Eikelenboom, G. (1998). Muscle fibre type and meat quality. Meat Science, 49(Supplement 1), 98, S219–S229. DOI: 10.1016/S0309-1740(98)90050-X.
]Apri DOISearch in Google Scholar
[
35. Kudrnáčová, E., Bartoň, L., Bureš, D., & Hoffman, L. C. (2018). Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Science, 141, 9–27. DOI: 10.1016/j.meatsci.2018.02.020.29558697
]Apri DOISearch in Google Scholar
[
36. Kulczyński, B., Sidor, A., & Gramza-Michałowska, A. (2019). Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants, 8(9), Article 335. DOI: 10.3390/antiox8090335.676983831443517
]Apri DOISearch in Google Scholar
[
37. Lucarini, M., Durazzo, A., Sciubba, F., Di Cocco, M. E., Gianferri, R., Alise, M., Santini, A., Delfini, M., & Lombardi-Boccia, G. (2020). Stability of the Meat Protein Type I Collagen: Influence of pH, Ionic Strength, and Phenolic Antioxidant. Foods, 9(4), Article 480. DOI: 10.3390/foods9040480.723129132290387
]Apri DOISearch in Google Scholar
[
38. Luz Fernandez, M., & West, K. L. (2005). Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. Journal of Nutrition, 135(9), 2075–2078. DOI: 10.1093/jn/135.9.2075.16140878
]Apri DOISearch in Google Scholar
[
39. Mcafee, A. J., Mcsorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M. W., Bonham, M. P., & Fearon, A. M. (2010). Red meat consumption: an overview of the risks and benefits. Meat Science, 84(1), 1–13. DOI: 10.1016/j.meatsci.2009.08.029.20374748
]Apri DOISearch in Google Scholar
[
40. McNeill, S. H. (2014). Inclusion of red meat in healthful dietary patterns. Meat Science, 98(3), 452–460. DOI: 10.1016/j.meatsci.2014.06.028.25034452
]Apri DOISearch in Google Scholar
[
41. Melton, S. L. (1990). Effects of feeds on flavor of red meat: a review. Journal of Animal Science, 68(12), 4421–4435. DOI: 10.2527/1990.68124421x.2286578
]Apri DOISearch in Google Scholar
[
42. Milczarek, A., Janocha, A., Niedziałek, G., Zowczak-Romanowicz, M, Horoszewicz, E., & Piotrowski, S. (2021). Health-Promoting Properties of the Wild-Harvested Meat of Roe Deer (Capreolus capreolus L.) and Red Deer (Cervus elaphus L.). Animals, 11(7), Article 2108. DOI: 10.3390/ani11072108.830023934359237
]Apri DOISearch in Google Scholar
[
43. Milovanovic, B. R., Djekic, I. V., Tomović, V. M., Vujadinović, D., & Tomasevic, I. B. (2021). Color measurement of animal source foods. Theory and practice of meat processing, 6(4), 311–319. DOI: 10.21323/2414-438X-2021-6-4-311-319.
]Apri DOISearch in Google Scholar
[
44. Neethling, J., Hoffman, L. C., & Muller, M. (2016). Factors influencing the flavour of game meat: A review. Meat Science, 113, 2016, 139–153. DOI: 10.1016/j.meatsci.2015.11.022.26658009
]Apri DOISearch in Google Scholar
[
45. Nuernberg, K., Dannenberger, D., Nuernberg, G., Ender, K., Voigt, J., Scollan, N. D., Wood, J. D., Nute, G. R., & Richardson, R. I. (2005). Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livestock Production Science, 94(1–2), 137–147. DOI: 10.1016/j.livprodsci.2004.11.036.
]Apri DOISearch in Google Scholar
[
46. O’Connor, L. E., Kim, J. E., & Campbell, W. W. (2017). Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 105(1), 57–69. DOI: 10.3945/ajcn.116.142521.518373327881394
]Apri DOISearch in Google Scholar
[
47. OECD/FAO. (2021). OECD-FAO Agricultural Outlook 2021-2030 (pp. 171, 274–275). Paris, France: OECD Publishing. DOI: 10.1787/19428846-en.
]Apri DOISearch in Google Scholar
[
48. Official Journal of the European Union (OJEU). (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. L 276/33.
]Search in Google Scholar
[
49. Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Willett, W. C., & Huet, F. B. (2011). Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. American Journal of Clinical Nutrition, 94(4), 1088–1096. DOI: 10.3945/ajcn.111.018978 pmid:21831992.317302621831992
]Apri DOISearch in Google Scholar
[
50. Papier, K., Knuppel, A., Syam, N., Jebb, S. A., & Key, T. J. (2021). Meat consumption and risk of ischemic heart disease: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. DOI: 10.1080/10408398.2021.1949575.34284672
]Apri DOISearch in Google Scholar
[
51. Poławska, E., Cooper, R. G., Jóźwik, A., & Pomianowski, J. (2013). Meat from alternative species – nutritive and dietetic value, and its benefit for human health – a review. CyTA - Journal of Food, 11(1), 37–42. DOI: 10.1080/19476337.2012.680916.
]Apri DOISearch in Google Scholar
[
52. Popoola, I. O., Soladoye, P. O., Gaudette, N. J., & Wismer, W. V. (2020). A Review of Sensory and Consumer-related Factors Influencing the Acceptance of Red Meats from Alternative Animal Species. Food Reviews International. DOI: 10.1080/87559129.2020.1860084.
]Apri DOISearch in Google Scholar
[
53. Puolanne, E., & Halonen, M. (2010). Theoretical aspects of water-holding in meat. Meat Science, 86(1), 151–165. DOI: 10.1016/j.meatsci.2010.04.038.20627421
]Apri DOISearch in Google Scholar
[
54. Purchas, R. W., & Aungsupakorn, R. (1993). Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers. Meat Science, 34(2), 163–178. DOI: 10.1016/0309-1740(93)90025-D.22060661
]Apri DOISearch in Google Scholar
[
55. Rautiainen, H., Bergvall, U. A., Felton, A. M., Tigabu, M., & Kjellander, P. (2021). Nutritional niche separation between native roe deer and the nonnative fallow deer - a test of interspecific competition. Mammal Research Mammal Research, 66, 443–455. DOI: 10.1007/s13364-021-00571-w.
]Apri DOISearch in Google Scholar
[
56. Sabow, A. B., Zulkifli, I., Goh, Y. M., Ab Kadir, M. Z. A., Kaka, U., Imlan, J. C., Abubakar, A. A., Adeyemi, K. D., & Sazili, A. Q. (2016). Bleeding Efficiency, Microbiological Quality and Oxidative Stability of Meat from Goats Subjected to Slaughter without Stunning in Comparison with Different Methods of Pre-Slaughter Electrical Stunning. PLoS ONE, 11(4): e0152661. DOI: 10.1371/journal.pone.0152661.481797827035716
]Apri DOISearch in Google Scholar
[
57. Salles, M. S. V., Zanetti, M. A., Negrão, J. A., Salles, F. A., Ribeiro, T. M. C., Netto, A. S., & Del Claro, G. R. (2012). Metabolic changes in ruminant calves fed cation-anion diets with different proportions of roughage and concentrate. Revista Brasileira de Zootecnia, 41(2), 414–420. DOI: 10.1590/S1516-35982012000200026.
]Apri DOISearch in Google Scholar
[
58. Sanders, L. M., Wilcox, M. L., & Maki, K. C. (2022). Red meat consumption and risk factors for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition. DOI: 10.1038/s41430-022-01150-1.35513448
]Apri DOISearch in Google Scholar
[
59. Scollan, N. D., Dannenberger, D., Nuernberg, K., Richardson, I., MacKintosh, S., Hocquette, J. F., & Moloney, A. P. (2014). Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 97(3), 384–394. DOI: 10.1016/j.meatsci.2014.02.015.24697921
]Apri DOISearch in Google Scholar
[
60. Scollan, N., Hocquette, J., Nuernberg, K., Dannenberger, D., Richardson, I., & Moloney, A. (2006). Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 74(1), 17–33. DOI: 10.1016/j.meatsci.2006.05.002.22062713
]Apri DOISearch in Google Scholar
[
61. Serrano, M. P., Maggiolino, A., Landete-Castillejos, T., Pateiro, M., Barbería, J. P., Fierro, Y., Domínguez, R., Gallego, L., García, A., De Palo, P., & Lorenzo, J. M. (2020). Quality of main types of hunted red deer meat obtained in Spain compared to farmed venison from New Zealand. Scientific Reports, 10, Article 12157. DOI: 10.1038/s41598-020-69071-2.737605932699311
]Apri DOISearch in Google Scholar
[
62. Simonne, A. H., Green, N. R., & Bransby, D. I. (1996). Consumer acceptability and β-carotene content of beef as related to cattle finishing diets. Journal of Food Science, 61(6), 1254–1256. DOI: 10.1111/j.1365-2621.1996.tb10973.x.
]Apri DOISearch in Google Scholar
[
63. Smith, N. W., Fletcher, A. J., Hill, J. P., & McNabb, W. C. (2022). Modeling the Contribution of Meat to Global Nutrient Availability. Frontiers in Nutrition, 9. Article 766796. DOI: 10.3389/fnut.2022.766796.884920935187029
]Apri DOISearch in Google Scholar
[
64. Sokoła-Wysoczańska, E., Wysoczański, T., Wagner, J., Czyż, K., Bodkowski, R., Lochyński, S., & Patkowska-Sokoła, B. (2018). Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients, 10(10), 1561. DOI: 10.3390/nu10101561.621344630347877
]Apri DOISearch in Google Scholar
[
65. Song, S., Ahn, C. -H., Song, M., & Kim, G. -D. (2021). Pork Loin Chop Quality and Muscle Fiber Characteristics as Affected by the Direction of Cut. Foods, 10(1), 43. DOI: 10.3390/foods10010043.782346733375235
]Apri DOISearch in Google Scholar
[
66. Soriano, A., & Sánchez-García, C. (2021). Nutritional Composition of Game Meat from Wild Species Harvested in Europe. In C. L. Ranabhat (Ed.), Meat and Nutrition. London, England: IntechOpen. DOI: 10.5772/intechopen.97763.
]Apri DOISearch in Google Scholar
[
67. Strazdina, V., Jemeljanovs, A., & Šterna, V. (2012). Fatty Acids Composition of Elk, Deer, Roe Deer and Wild Boar Meat Hunted in Latvia. World Academy of Science, Engineering and Technology. International Journal of Animal and Veterinary Sciences, 6(9), 765–768. DOI: 10.5281/zenodo.1071826.
]Apri DOISearch in Google Scholar
[
68. Strazdina, V., Jemeljanovs, A., & Šterna, V. (2013). Nutrition Value of Wild Animal Meat. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 67(4-5): 373–377. DOI: 10.2478/prolas-2013-0074.
]Apri DOISearch in Google Scholar
[
69. Tänavots, A., Põldvere, A., Torp, J., Soidla, R., Mahla, T., Andreson, H., & Lepasalu, L. (2015). Effect of age on composition and quality of Longissimus thoracis muscle of the moose (Alces alces L.) harvested in Estonia. Agronomy Research, 13(4), 1131–1142.
]Search in Google Scholar
[
70. Taylor, R. G., Labas, R., Smulders, F. J. M, & Wiklund, E. (2002). Ultrastructural changes during aging in Longissimus thoracis from moose and reindeer. Meat Science, 60(4), 321–326. DOI: 10.1016/S0309-1740(01)00120-6.22063633
]Apri DOISearch in Google Scholar
[
71. TIBCO Software Inc. (2017). Statistica [data analysis software system], version 13.3. http://statistica.io.
]Search in Google Scholar
[
72. Tufeanu, R., & Tiţa, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3–19. DOI: 10.1515/aucft-2016-0001.
]Apri DOISearch in Google Scholar
[
73. U.S. Department of Agriculture & U.S. Department of Health and Human Services (USDA & HHS). (2020). Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Retrieved July 12, 2022, from: https://www.dietaryguidelines.gov/.
]Search in Google Scholar
[
74. Valencak, T. G., Gamsjäger, L., Ohrnberger, S., Culbert, N. J., & Ruf, T. (2015). Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res Notes, 8, 273. DOI: 10.1186/s13104-015-1254-1.448321526116375
]Apri DOISearch in Google Scholar
[
75. Van Oeckel, M. J., Warnants, N., Boucqueé, C. V. (1999). Comparison of different methods for measuring water holding capacity and juiciness of pork versus on-line screening methods. Meat Science, 51, 313–320. DOI: 10.1016/S0309-1740(98)00123-5.22062025
]Apri DOISearch in Google Scholar
[
76. Van, T. T. H., Yidana, Z., Smooker, P. M., & Coloe, P. J. (2020). Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. Journal of Global Antimicrobial Resistance, 20, 170–177. DOI: 10.1016/j.jgar.2019.07.031.31401170
]Apri DOISearch in Google Scholar
[
77. Watanabe, A., Daly, C. C., & Devine, C. E. (1996). The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Science, 42(1), 67–78. DOI: 10.1016/0309-1740(95)00012-7.22060302
]Apri DOISearch in Google Scholar
[
78. Whitton, C., Bogueva, D., Marinova, D., & Phillips, C. J. C. (2021). Are We Approaching Peak Meat Consumption? Analysis of Meat Consumption from 2000 to 2019 in 35 Countries and Its Relationship to Gross Domestic Product. Animals, 11(12), Article 3466 DOI: 10.3390/ani11123466.869788334944243
]Apri DOISearch in Google Scholar
[
79. Williams, P. (2007). Nutritional composition of red meat. Nutrition & Dietetics, 64 (Suppl. 4), S113–S119. DOI: 10.1111/j.1747-0080.2007.00197.x.
]Apri DOISearch in Google Scholar
[
80. Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343–358. DOI: 10.1016/j.meatsci.2007.07.019.22062452
]Apri DOISearch in Google Scholar
[
81. Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., & Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science 66(1), 21–32. DOI: 10.1016/S0309-1740(03)00022-6.22063928
]Apri DOISearch in Google Scholar
[
82. World Cancer Research Fund International. (2018). Recommendations and public health and policy implications. Retrieved July 12, 2022, from: https://www.wcrf.org/sites/default/files/Recommendations.pdf.
]Search in Google Scholar
[
83. Zhang, X., Owens, C. M., & Schilling, M. W. (2017). Meat: the edible flesh from mammals only or does it include poultry, fish, and seafood? Animal Frontiers, 7(4), 12–18. https://doi.org/10.2527/af.2017.0437.10.2527/af.2017.0437
]Search in Google Scholar
[
84. Żochowska-Kujawska, J., Sobczak, M., & Lachowicz, K. (2009). Comparison of the texture, rheological properties and myofibre characteristics of sm (semimembranosus) muscle of selected species of game animals. Polish Journal of Food and Nutrition Sciences, 59(3), 243–246.
]Search in Google Scholar
[
85. Zong, G., Li Y., Sampson, L., Dougherty, L. W., Willett, W. C., Wanders, A. J., Alssema, M., Zock, P. L., Hu, F. B., & Sun, Q. (2018). Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. The American Journal of Clinical Nutrition, 107(3), 445–453. DOI: 10.1093/ajcn/nqx004.587510329566185
]Apri DOISearch in Google Scholar