1. bookVolume 23 (2023): Edizione 4 (November 2023)
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Female Bovine Donor Age Influence on Quality Markers’ Expression and PPARS Abundance in Day 7 Blastocysts

Pubblicato online: 13 Nov 2023
Volume & Edizione: Volume 23 (2023) - Edizione 4 (November 2023)
Pagine: 1061 - 1069
Ricevuto: 11 Aug 2022
Accettato: 03 Mar 2023
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno

Abbott B.D. (2009). Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod. Toxicol., 27: 246–257. Search in Google Scholar

Arnold D.R., Bordignon V., Lefebvre R., Murphy B.D., Smith L.C. (2006). Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos. Reproduction., 132: 279–290. Search in Google Scholar

Ax R.L., Armbrust S., Tappan R., Gilbert G., Oyarzo J.N., Bellin M.E., Selner D., McCauley T.C. (2005). Superovulation and embryo recovery from peripubertal Holstein heifers. Anim. Reprod. Sci., 85: 71–80. Search in Google Scholar

Barak Y., Nelson M.C., Ong E.S., Jones Y.Z., Ruiz-Lozano P., Chien K.R., Koden A., Evans R.M. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell., 4: 585e95. Search in Google Scholar

Barak Y., Liao D., He W., Ong E.S., Nelson M.C., Olefsky J.M., Bo-land R., Evans R.M. (2002) Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. USA, 99: 303e8. Search in Google Scholar

Baruselli P.S., Batista E.O.S.., Vieira L.M., Ferreira R.M., Guerreiro B.G., Bayeux B.M., Sales J.N.S., Souza A.H., Gimenes L.U. (2016). Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim. Reprod., 13: 264–272. Search in Google Scholar

Bensinger S.J., Tontonoz P. (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 454: 470e7. Search in Google Scholar

Beyhan Z., Forsberg E.J., Eilertsen K.J., Kent-First M., First N.L. (2007). Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Mol. Reprod. Dev., 74: 18–27. Search in Google Scholar

Brooks K., Burns G., Spencer T.E. (2014). Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J. Anim. Sci. Biotechnol., 5: 1–12. Search in Google Scholar

Cavalieri F.L.B., Morotti F., Seneda M.M., Colombo A.H.B., Andreazzi M.A., Emanuelli I.P., Rigolon L.P. (2018). Improvement of bovine in vitro embryo production by ovarian follicular wave synchronization prior to ovum pick-up. Theriogenology, 117: 57–60. Search in Google Scholar

Chang W.L., Liu Y.W., Dang Y.L., Jiang X.X., Xu H., Huang X., Wang Y.L., Wang H., Zhu C., Xue L.Q., Lin H.Y., Meng W., Wang H. (2018). PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development, 145: 148932. Search in Google Scholar

Currin L., Baldassarre H., Bordignon V. (2021). In vitro production of embryos from prepubertal Holstein cattle and Mediterranean water buffalo: problems, progress, and potential. Animals, 11: 2275. Search in Google Scholar

de Silva M.O., Borges M.S., Fernandes L.G., Rodrigues N.N., Watanabe Y.F., Joaquim D.C., Oliveira C.S., da Feuchard V.L.S., Dos Cyrillo J.N.S.G., Mercadante M.E.Z., Monteiro F.M. (2022). Effect of Nellore (Bos indicus) donor age on in-vitro embryo production and pregnancy rate. Reprod. Domest. Anim., 57: 980–988. Search in Google Scholar

Dorniak P., Bazer F.W., Spencer T.E. (2011). Prostaglandins regulate conceptus elongation and mediate effects of interferon tau on the ovine uterine endometrium. Biol. Reprod., 84: 1119–1127. Search in Google Scholar

El-Sayed A., Hoelker M., Rings F., Salilew D., Jennen D., Tholen E., Sirard M.A., Schellander K., Tesfaye D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics., 28: 84–96. Search in Google Scholar

Ferré L.B., Kjelland M.E., Strøbech L.B., Hyttel P., Mermillod P., Ross P.J. (2020) Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 4: 991–1004. Search in Google Scholar

Forde N., Lonergan P. (2017). Interferon-tau and fertility in ruminants. Reproduction, 154: F33–F43. Search in Google Scholar

Galli C., Duchi R., Colleoni S., Lagutina I., Lazzari G. (2014). Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo, and horses: from the research laboratory to clinical practice. Theriogenology, 81: 138–151. Search in Google Scholar

Guo J., Lu W.F., Liang S., Choi J.W., Kim N.H., Cui X.S. (2017). Peroxisome proliferator-activated receptor δ improves porcine blastocyst hatching via the regulation of fatty acid oxidation. Theriogenology, 90: 266–275. Search in Google Scholar

Gutiérrez-Añez J.C., Lucas-Hahn A., Hadeler K.G., Aldag P., Nie-mann H. (2021). Melatonin enhances in vitro developmental competence of cumulus-oocyte complexes collected by ovum pick-up in prepubertal and adult dairy cattle. Theriogenology, 161: 285–293. Search in Google Scholar

Hansen T.R., Sinedino L.D.P., Spencer T.E. (2017). Paracrine and endocrine actions of interferon tau (IFNT). Reproduction, 154: F45–F59. Search in Google Scholar

Huang J.C. (2008). The role of peroxisome proliferator-activated receptors in the development and physiology of gametes and preim-plantation embryos. PPAR Res., 2008: 732303. Search in Google Scholar

Huang M.L., Qi C.L., Zou Y., Yang R., Jiang Y., Sheng J.F., Kong Y.G., Tao Z.Z., Chen S.M. (2020). Plac8-mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway. J. Cell. Mol. Med., 24: 7778–7788. Search in Google Scholar

Idrees M., Xu L., El Sheikh M., Sidrat T., Song S.-H., Joo M.-D., Lee K.-L., Kong I.-K. (2019). The PPARδ agonist GW501516 improves lipolytic/lipogenic balance through CPT1 and PEPCK during the development of pre-implantation bovine embryos. Int. J. Mol. Sci., 20: 6066. Search in Google Scholar

Jawerbaum A., Capobianco E. (2011). Review: Effects of PPAR activation in the placenta and the fetus: implications in maternal diabetes. Placenta, 32: S212–S217. Search in Google Scholar

Jia Y., Ying X., Zhou J., Chen Y., Luo X., Xie S., Wang Q., Hu W., Wang L. (2018). The novel KLF4/PLAC8 signaling pathway regulates lung cancer growth. Cell Death Dis., 9: 603. Search in Google Scholar

Jiang J., Ma L., Prakapenka D., VanRaden P.M., Cole J.B., Da Y. (2019). A large-scale genome-wide association study in U.S. Holstein cattle. Front. Genet., 10: 412. Search in Google Scholar

Kasimanickam R.K., Kasimanickam V.R. (2020). IFNT, ISGs, PPARs, RXRs and MUC1 in day 16 embryo and endometrium of repeat-breeder cows, with or without subclinical endometritis. Theriogenology, 158: 39–49. Search in Google Scholar

Kawamoto T.S., Viana J.H.M., Pontelo T.P., Franco M.M., De Faria O.A.C., Fidelis A.A.G., Vargas L.N., Figueiredo R.A. (2022) Dynamics of the reproductive changes and acquisition of oocyte competence in Nelore (Bos taurus indicus) calves during the early and intermediate prepubertal periods. Animals, 12: 2137–2022. Search in Google Scholar

Keramari M., Razavi J., Ingman K.A., Patsch C., Edenhofer F., Ward C.M., Kimber S.J. (2010). Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One, 5(11): e13952. Search in Google Scholar

Khatir H., Lonergan P., Carolan C., Mermillod P. (1996). Prepubertal bovine oocyte: a negative model for studying oocyte developmental competence. Mol. Reprod. Dev., 45: 231–239. Search in Google Scholar

Khatir H., Lonergan P., Touze J.L., Mermillod P. (1998). The characterization of bovine embryos obtained from prepubertal calf oocytes and their viability after non surgical embryo transfer. Theriogenology, 50: 1201e10. Search in Google Scholar

Kowalczyk-Zieba I., Boruszewska D., Suwik K., Staszkiewicz-Chodor J., Jaworska J., Woclawek-Potocka I. (2020). Iloprost affects in vitro maturation and developmental competence of bovine oocytes. Theriogenology, 157: 286–296. Search in Google Scholar

Ludwig T., Eggenschwiler J., Fisher P., D’Ercole A.J., Davenport M.L., Efstratiadis A. (1996). Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol., 177: 517–535. Search in Google Scholar

Majerus V., De Roover R., Etienne D., Kaidi S., Massip A., Dessy F., Donnay I. (1999). Embryo production by ovum pick up in un-stimulated calves before and after puberty. Theriogenology, 52: 1169–1179. Search in Google Scholar

Mao M., Cheng Y., Yang J., Chen Y., Xu L., Zhang X., Li Z., Chen C., Ju S., Zhou J., Wang L. (2021). Multifaced roles of PLAC8 in cancer. Biomark. Res., 9: 1–10. Search in Google Scholar

McNeel A.K., Reiter B.C., Weigel D., Osterstock J., Di Croce F.A. (2017) Validation of genomic predictions for wellness traits in US Holstein cows. J. Dairy Sci., 100: 9115–9124. Search in Google Scholar

Morin-Doré L., Blondin P., Vigneault C., Grand F.X., Labrecque R., Sirard M.A. (2017). Transcriptomic evaluation of bovine blasto-cysts obtained from peri-pubertal oocyte donors. Theriogenology, 93: 111–123. Search in Google Scholar

Mourtada-Maarabouni M., Watson D., Munir M., Farzaneh F., Williams G.T. (2013). Apoptosis suppression by candidate oncogene PLAC8 is reversed in other cell types. Curr. Cancer. Drug. Targets., 13: 80–91. Search in Google Scholar

Oropeza A., Wrenzycki C., Herrmann D., Hadeler K.G., Niemann H. (2004). Improvement of the developmental capacity of oocytes from prepubertal cattle by intraovarian insulin-like growth factor-I application. Biol. Reprod., 70: 1634–1643. Search in Google Scholar

Orozco-Lucero E., Sirard M.A. (2014). Molecular markers of fertility in cattle oocytes and embryos: progress and challenges. Anim. Reprod., 11: 183–194. Search in Google Scholar

Palma G.A., Tortonese D.J., Sinowatz F. (2001). Developmental capacity in vitro of prepubertal oocytes. Anat. Histol. Embryol., 30: 295e300. Search in Google Scholar

Patra S.K. (2020). Roles of OCT4 in pathways of embryonic development and cancer progression. Mech. Ageing. Dev., 189: 111286. Search in Google Scholar

Rizos D., Ward F., Duffy P., Boland M.P., Lonergan P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev., 61: 234–248. Search in Google Scholar

Rizzino A., Wuebben E.L. (2016). Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta Gene Regul. Mech., 1859: 780–791. Search in Google Scholar

Rocha C.C., da Silveira J.C., Forde N., Binelli M., Pugliesi G. (2021). Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim. Reprod., 18: e20200048. Search in Google Scholar

Shi L., Xiao L., Heng B., Mo S., Chen W., Su Z. (2017). Overexpression of placenta specific 8 is associated with malignant progression and poor prognosis of clear cell renal cell carcinoma. Int. Urol. Nephrol., 49: 1165–1176. Search in Google Scholar

Sidrat T., Khan A.A., Idrees M., Joo M.D., Xu L., Lee K.L., Kong I.K. (2020). Role of Wnt signaling during in-vitro bovine blastocyst development and maturation in synergism with PPARδ signaling. Cells, 9: 923. Search in Google Scholar

Sidrat T., Rehman Z.U., Joo M.D., Lee K.L., Kong I.K. (2021). Wnt/β-catenin pathway-mediated PPARδ expression during embryonic development differentiation and disease. Int. J. Mol. Sci., 22: 1854. Search in Google Scholar

Spanos S., Becker D.L., Winston R.M., Hardy K. (2000). Anti-apoptotic action of insulin-like growth factor-I during human preim-plantation embryo development. Biol. Reprod., 63: 1413–1420. Search in Google Scholar

Sun Y., Lai X., Yu Y., Li J., Cao L., Lin W., Huang C., Liao J., Chen W., Li C., Yang C., Ying M., Chen Q., Ye Y. (2019). Inhibitor of DNA binding 1 (Id1) mediates stemness of colorectal cancer cells through the Id1-c-Myc-PLAC8 axis via the Wnt/β-catenin and Shh signaling pathways. Cancer Manag. Res., 11: 6855–6869. Search in Google Scholar

Velásquez A.E., Veraguas D., Cabezas J., Manríquez J., Castro F.O., Rodríguez-Alvarez L.L. (2019). The expression level of SOX2 at the blastocyst stage regulates the developmental capacity of bovine embryos up to day-13 of in vitro culture. Zygote, 27: 398–404. Search in Google Scholar

Wang L.M., Feng H.L., Ma Y.Zh., Cang M., Li H.J., Yan Zh., Zhou P., Wen J.X., Bou S., Liu D.J. (2009). Expression of IGF receptors and its ligands in bovine oocytes and preimplantation embryos. Anim. Reprod. Sci., 114: 99–108. Search in Google Scholar

Wang X.L., Wang K., Han G.C., Zeng S.M. (2013) A potential autocrine role for interferon tau in ovine trophectoderm. Reprod. Domest. Anim., 48: 819–825. Search in Google Scholar

Wu S.F., Huang Y., Hou J.K., Yuan T.T., Zhou C.X., Zhang J., Chen G.Q. (2010). The downregulation of onzin expression by PKCepsilon-ERK2 signaling and its potential role in AML cell differentiation. Leukemia, 24: 544–551. Search in Google Scholar

Yao N., Wan P.C., Hao Z.D., Gao F.F., Yang L., Cui M.S., Wu Y., Liu J.H., Liu S., Chen H., Zeng S.M. (2009). Expression of interferontau mRNA in bovine embryos derived from different procedures. Reprod. Domest. Anim., 44: 132–139. Search in Google Scholar

Yu J.S., Cui W. (2016). Proliferation, survival, and metabolism: the role of PI3K/AKT/mTOR signaling in pluripotency and cell fate determination. Development, 143: 3050–3060. Search in Google Scholar

Zaraza J., Oropeza A., Velazquez M.A., Korsawe K., Herrmann D., Carnwath J.W., Niemann H. (2010). Developmental competence and mRNA expression of preimplantation in vitro-produced embryos from prepubertal and postpubertal cattle and their relationship with apoptosis after intraovarian administration of IGF-1. Theriogenology, 74: 75–89. Search in Google Scholar

Articoli consigliati da Trend MD