1. bookVolume 23 (2013): Edizione 4 (December 2013)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
ISSN
1641-876X
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Comparison of speaker dependent and speaker independent emotion recognition

Pubblicato online: 31 Dec 2013
Volume & Edizione: Volume 23 (2013) - Edizione 4 (December 2013)
Pagine: 797 - 808
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
ISSN
1641-876X
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

Ayadi, M.E., Kamel, M.S. and Karray, F. (2007). Speech emotion recognition using Gaussian mixture vector autoregressive models, IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP 2007), Honolulu, HI, USA, Vol. 4, pp. IV-957-IV-960.Search in Google Scholar

Ayadi, M.E., Kamel, M.S. and Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases, Pattern Recognition 44(3): 572-587.10.1016/j.patcog.2010.09.020Search in Google Scholar

Batliner, A., Steidl, S., Hacker, C., Noth, E. and Niemann, H. (2005). Tales of tuning-prototyping for automatic classification of emotional user states, Interspeech 2005, Lisbon, Portugal, pp. 489-492.Search in Google Scholar

Brooks, M. (2012). Voicebox: Speech processing toolbox for Matlab, http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.Search in Google Scholar

Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. and Weiss, B. (2005). A database of German emotional speech, Interspeech 2005, Lisbon, Portugal, pp. 1517-1520.Search in Google Scholar

Camacho, A. and Harris, J.G. (2008). A sawtooth waveform inspired pitch estimator for speech and music, Journal of the Acoustical Society of America 124: 1638-1652.10.1121/1.295159219045655Search in Google Scholar

Cichosz, J. and Slot, K. (2007). Emotion recognition in speech signal using emotion-extracting binary decision trees, ACII 2007, Lisbon, Portugal.Search in Google Scholar

Clavel, C., Devillers, L., Richard, G., Vasilexcu, I. and Ehrette, T. (2007). Detection and analysis of abnormal situations through fear-type acoustic manifestations, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), Honolulu, HI, USA, Vol. 4, pp. IV-21-IV-24.Search in Google Scholar

Devillers, L. and Vidrascu, L. (2006). Real-life emotions detection with lexical and paralinguistic cues on human-human call center dialogs, Interspeech 2006, Pittsburgh, PA, USA, pp. 801-804.Search in Google Scholar

Ekman, P. (1972). Universals and cultural differences in facial expressions of emotions, in J. Cole (Ed.), Nebraska Symposium on Motivation, Vol. 19, University of Nebraska Press, Lincoln, NE, pp. 207-282.Search in Google Scholar

Engberg, I.S., Hansen, A.V., Andersen, O. and Dalsgaard, P. (1997). Design, recording and verification of a Danish emotional speech database, Eurospeech 1997, Rhodes, Greece.10.21437/Eurospeech.1997-482Search in Google Scholar

Erden, M. and Arslan, L.M. (2011). Automatic detection of anger in human-human call center dialogs, Interspeech 2011, Florence, Italy, pp. 81-84.Search in Google Scholar

Gajsek, R., Mihelic, F. and Dobrisek, S. (2013). Speaker state recognition using an HMM-based feature extraction method, Computer Speech and Language 27(1): 135-150.10.1016/j.csl.2012.01.007Search in Google Scholar

Gorska, Z. and Janicki, A. (2012). Recognition of extraversion level based on handwriting and support vector machines, Perceptual and Motor Skills 114(3)(0031-5125): 857-869.10.2466/03.09.28.PMS.114.3.857-86922913026Search in Google Scholar

Grimm, M., Kroschel, K. and Narayanan, S. (2007). Support vector regression for automatic recognition of spontaneous emotions in speech, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), Honolulu, HI, USA, Vol. 4, pp. IV-1085-IV-1088, ID: 1.Search in Google Scholar

Hassan, A. and Damper, R.I. (2010). Multi-class and hierarchical SVMs for emotion recognition, Interspeech 2010, Makuhari, Japan, pp. 2354-2357.Search in Google Scholar

He, L., Lech, M., Memon, S. and Allen, N. (2008). Recognition of stress in speech using wavelet analysis and teager energy operator, Interspeech 2008, Brisbane, Australia, pp. 605-608.Search in Google Scholar

Hirschberg, J., Benus, S., Brenier, J.M., Enos, F., Friedman, S., Gilman, S., Gir, C., Graciarena, M., Kathol, A. and Michaelis, L. (2005). Distinguishing deceptive from non-deceptive speech, Interspeech 2005, Lisbon, Portugal, pp. 1833-1836.Search in Google Scholar

Iliou, T. and Anagnostopoulos, C.-N. (2010). Classification on speech emotion recognition-a comparative study, International Journal on Advances in Life Sciences 2(1-2): 18-28.Search in Google Scholar

Janicki, A. (2012). On the Impact of Non-speech Sounds on Speaker Recognition, Text, Speech and Dialogue, Vol. 7499, Springer, Berlin/Heidelberg, pp. 566-572.Search in Google Scholar

Janicki, A. and Turkot, M. (2008). Speaker emotion recognition with the use of support vector machines, Telecommunication Review and Telecommunication News (8-9): 994-1005, (in Polish).Search in Google Scholar

Jeleń, Ł., Fevens, T. and Krzy˙zak, A. (2008). Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, International Journal of Applied Mathematics and Computer Science 18(1): 75-83, DOI: 10.2478/v10006-008-0007-x.10.2478/v10006-008-0007-xSearch in Google Scholar

Kaminska, D. and Pelikant, A. (2012). Recognition of human emotion from a speech signal based on Plutchik’s model, International Journal of Electronics and Telecommunications 58(2): 165-170.10.2478/v10177-012-0024-4Search in Google Scholar

Kang, B.S., Han, C.H., Lee, S.T., Youn, D.H. and Lee, C. (2000). Speaker dependent emotion recognition using speech signals ICSLP 2000, Beijing, China.10.21437/ICSLP.2000-288Search in Google Scholar

Kowalczuk, Z. and Czubenko, M. (2011). Intelligent decision-making system for autonomous robots, International Journal of Applied Mathematics and Computer Science 21(4): 671-684, DOI: 10.2478/v10006-011-0053-7.10.2478/v10006-011-0053-7Search in Google Scholar

Liberman, M., Davis, K., Grossman, M., Martey, N. and Bell, J. (2002). Emotional Prosody Speech and Transcripts, Linguistic Data Consortium, Philadelphia, PA.Search in Google Scholar

Liscombe, J., Hirschberg, J. and Venditti, J.J. (2005). Detecting certainess in spoken tutorial dialogues, Interspeech 2005, Lisbon, Portugal.10.21437/Interspeech.2005-581Search in Google Scholar

Liu, G., Lei, Y. and Hansen, J.H.L. (2010). A novel feature extraction strategy for multi-stream robust emotion identification, Interspeech 2010, Makuhari, Japan, pp. 482-485.Search in Google Scholar

Lugger, M. and Yang, B. (2007). The relevance of voice quality features in speaker independent emotion recognition, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2007), Honolulu, HI, USA, Vol. 4, pp. IV-17-IV-20.Search in Google Scholar

Lugger, M., Yang, B. and Wokurek, W. (2006). Robust estimation of voice quality parameters under realworld disturbances, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, France, Vol. 1, p. I.Search in Google Scholar

Mehrabian, A. and Wiener, M. (1967). Decoding of inconsistent communications, Journal of Personality and Social Psychology 6(1): 109-114.10.1037/h00245326032751Search in Google Scholar

Neiberg, D., Laukka, P. and Ananthakrishnan, G. (2010). Classification of affective speech using normalized time-frequency cepstra, 5th International Conference on Speech Prosody (Speech Prosody 2010), Chicago, IL, USA, pp. 1-4.Search in Google Scholar

Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, International Journal of Applied Mathematics and Computer Science 22(1): 225-237, DOI: 10.2478/v10006-012-0017-6.10.2478/v10006-012-0017-6Search in Google Scholar

Scherer, K.R. (2003). Vocal communication of emotion: A review of research paradigms, Speech Communication 40(1-2): 227-256.10.1016/S0167-6393(02)00084-5Search in Google Scholar

Schuller, B., Koehler, N., Moeller, R. and Rigoll, G. (2006). Recognition of interest in human conversational speech, Interspeech 2006, Pittsburgh, PA, USA, pp. 793-796.Search in Google Scholar

Schuller, B., Vlasenko, B., Eyben, F., Rigoll, G. and Wendemuth, A. (2009). Acoustic emotion recognition: A benchmark comparison of performances, IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU 2009), Merano, Italy, pp. 552-557.Search in Google Scholar

Seppi, D., Batliner, A., Schuller, B., Steidl, S., Vogt, T.,Wagner, J., Devillers, L., Vidrascu, L., Amir, N. and Aharonson, V. (2008). Patterns, prototypes, performance: Classifying emotional user states, Interspeech 2008, Brisbane, Australia, pp. 601-604.Search in Google Scholar

Vapnik, V.N. (1982). Estimation of Dependences Based on Empirical Data, Springer-Verlag, New York, NY, (translation of Vosstanovlenie zavisimostei po empiricheskim dannym by Samuel Kotz).Search in Google Scholar

Xiao, Z., Dellandrea, E., Dou, W. and Chen, L. (2006). Two-stage classification of emotional speech, International Conference on Digital Telecommunications (ICDT’06), Cap Esterel, Cˆote d’Azur, France, pp. 32-32.Search in Google Scholar

Yacoub, S., Simske, S., Lin, X. and Burns, J. (2003). Recognition of emotions in interactive voice response systems, Eurospeech 2003, Geneva, Switzerland, pp. 1-4.Search in Google Scholar

Yu, C., Aoki, P. M. and Woodruff, A. (2004). Detecting user engagement in everyday conversations, 8th International Conference on Spoken Language Processing (ICSLP 2004), Jeju, Korea, pp. 1-6. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo