1. bookVolume 16 (2022): Edizione 4 (December 2022)
Dettagli della rivista
Formato
Rivista
eISSN
2300-5319
Prima pubblicazione
22 Jan 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Application of the Deformation Fracture Criterion to Cracking of Disc Specimens with a Central Narrow Slot

Pubblicato online: 15 Nov 2022
Volume & Edizione: Volume 16 (2022) - Edizione 4 (December 2022)
Pagine: 393 - 398
Ricevuto: 09 Oct 2022
Accettato: 20 Oct 2022
Dettagli della rivista
Formato
Rivista
eISSN
2300-5319
Prima pubblicazione
22 Jan 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Rice JR. Limitations to the small scale yielding approximation for crack tip plasticity. J Mech Phys Solids. 1974;22(1):17-26.10.1016/0022-5096(74)90010-6 Search in Google Scholar

2. Savruk MP, Kazberuk A. Stress Concentration at Notches. Springer International Publishing Switzerland; 2017.10.1007/978-3-319-44555-7 Search in Google Scholar

3. Li D, Wong LNY. The Brazilian disc test for rock mechanics applications: review and new insights. Rock mechanics and rock engineering. 2013;46(2):269-87.10.1007/s00603-012-0257-7 Search in Google Scholar

4. Garcıa VJ, Marquez CO, Zuniga-Suarez AR, Zuniga-Torres BC, VillaltaGranda LJ. Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights. International Journal of Concrete Structures and Materials. 2017;11(2):343-63.10.1007/s40069-017-0194-7 Search in Google Scholar

5. Libatskii L, Kovchik S. Fracture of discs containing cracks. Mater Sci. 1967;3(4):334-9.10.1007/BF00714960 Search in Google Scholar

6. Yarema SY, Krestin GS. Determination of the modulus of cohesion of brittle materials by compressive tests on disc specimens containing cracks. Mater Sci. 1967;2(1):7-10.10.1007/BF00715157 Search in Google Scholar

7. Yarema SY, Krestin GS. Limiting equilibrium of a disk with a diametral crack. Int Appl Mech. 1968;4(7):55-8. Search in Google Scholar

8. Yarema SY. Stress state of disks with cracks, recommended as specimens for investigating the resistance of materials to crack development. Mater Sci. 1977;12(4):361-74.10.1007/BF00716287 Search in Google Scholar

9. Yarema SY, Ivanitskaya G, Maistrenko A, Zboromirskii A. Crack development in a sintered carbide in combined deformation of types I and II. Strength of Materials. 1984;16(8):1121-8.10.1007/BF01530284 Search in Google Scholar

10. Atkinson C, Smelser R, Sanchez J. Combined mode fracture via the cracked Brazilian disk test. Int J Fract. 1982;18(4):279-91.10.1007/BF00015688 Search in Google Scholar

11. Awaji H, Sato S. Combined mode fracture toughness measurement by the disk test. J Eng Mater Technol. 1978;100:175-82.10.1115/1.3443468 Search in Google Scholar

12. Zhou S. Fracture Propagation in Brazilian Discs with Multiple Preexisting Notches by Using a Phase Field Method. Periodica Polytechnica Civil Engineering. 2018;62(3):700-8. Search in Google Scholar

13. Xiankai B, Meng T, Jinchang Z. Study of mixed mode fracture toughness and fracture trajectories in gypsum interlayers in corrosive environment. Royal Society Open Science. 2018;5(1).10.1098/rsos.171374579291829410841 Search in Google Scholar

14. Tang SB. Stress intensity factors for a Brazilian disc with a central crack subjected to compression. International Journal of Rock Mechanics and Mining Sciences. 2017;93:38 45.10.1016/j.ijrmms.2017.01.003 Search in Google Scholar

15. Seitl S, Miarka P. Evaluation of mixed mode I/IIfracturetoughnessof C 50/60 from Brazilian disc test. Frattura ed Integrità Strutturale. 2017;11(42):119-27.10.3221/IGF-ESIS.42.13 Search in Google Scholar

16. Ayatollahi MR, Aliha MRM. On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics. 2008;75(16):4631 4641.10.1016/j.engfracmech.2008.06.018 Search in Google Scholar

17. Ayatollahi MR, Aliha MRM. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational Materials Science. 2007;38(4):660 670.10.1016/j.commatsci.2006.04.008 Search in Google Scholar

18. Atahan HN, Tasdemir MA, Tasemir C, Ozyurt N, Akyuz S. Mode I and mixed mode fracture studies in brittle materials using the Brazilian disc specimen. Mater Struct. 2005;38:305-12.10.1007/BF02479295 Search in Google Scholar

19. Dong S. Theoretical analysis of the effects of relative crack length and loading angle on the experimental results for cracked Brazilian disk testing. Engineering Fracture Mechanics. 2008;75(8):2575 2581.10.1016/j.engfracmech.2007.09.008 Search in Google Scholar

20. Wang QZ, Gou XP, Fan H. The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption. Engineering Fracture Mechanics. 2012;82:1 8.10.1016/j.engfracmech.2011.11.001 Search in Google Scholar

21. Ayatollahi MR, Aliha MRM. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. International Journal of Solids and Structures. 2009;46(2):311 321.10.1016/j.ijsolstr.2008.08.035 Search in Google Scholar

22. Savruk MP, Kazberuk A. Problems of fracture mechanics of solid bodies with V-shaped notches. Mater Sci. 2009;45(2):162-80.10.1007/s11003-009-9170-y Search in Google Scholar

23. Leonov MY, Panasyuk VV. Development of a nanocrack in a solid. Prikl Mekh. 1959;5(4):391-401. Search in Google Scholar

24. Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100-4.10.1016/0022-5096(60)90013-2 Search in Google Scholar

25. Kosior-Kazberuk M, Kazberuk A, Bernatowicz A. Estimation of Cement Composites Fracture Parameters Using Deformation Criterion. Materials. 2019;12(24):4206.10.3390/ma12244206 Search in Google Scholar

26. Panasyuk VV, Savruk MP. Model for plasticity bands in elastoplastic failure mechanics. Mater Sci. 1992;28(1):41-57. Search in Google Scholar

27. Savruk MP. Two-dimensional problems of elasticity for bodies with cracks (in Russian). Naukova Dumka, Kiev; 1981. Search in Google Scholar

28. Muskhelishvili NI. Some Basic Problems of the Mathematical Theory of Elasticity. 2nd ed. Noordhoff International Publishing, Leyden; 1977.10.1007/978-94-017-3034-1 Search in Google Scholar

29. Sidi A. A new variable transformation for numerical integration. H Brass H and G Hammerlin, editors, Numerical integration IV. 1993:359-73.10.1007/978-3-0348-6338-4_27 Search in Google Scholar

30. Johnston PR. Application of sigmoidal transformations to weakly singular and near-singular boundary element integrals. Int J Numer Meth Eng. 1999;45:1333-48.10.1002/(SICI)1097-0207(19990810)45:10<1333::AID-NME632>3.0.CO;2-Q Search in Google Scholar

31. Belotserkovsky SM, Lifanov IK. Method of discrete vortices. CRC Press LLC, Boca Raton; 1993. Search in Google Scholar

32. Savruk MP, Osiv PN, Prokopchuk IV. Numerical analysis in plane problems of the crack theory (in Russian). Naukova Dumka, Kiev; 1989. Search in Google Scholar

33. Rice JR. The location of plastic deformation. Theor Appl Mech. 1976;1:20720. Search in Google Scholar

34. Benthem JP. Stresses in the region of rounded corners. Int J Solids Struct. 1987;23(2):239-52.10.1016/0020-7683(87)90057-6 Search in Google Scholar

35. Savruk MP, Kazberuk A. Relationship between the stress intensity and stress concentration factors for sharp and rounded notches. Mater Sci. 2006;42(6):725-38.10.1007/s11003-006-0140-3 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo