[ADLER, K. – PIIKKI, K. – SÖDERSTRÖM, M. – ERIKSSON, J. – ALSHIHABI, O. 2020. Predictions of Cu, Zn, and Cd concentrations in soil using portable X-Ray fluorescence measurements. in Sensors, vol. 20, no. 2, pp. 474. DOI: 10.3390/s20020474.10.3390/s20020474]Search in Google Scholar
[ALI, H. – KHAN, E. – ILAHI, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. In Journal of Chemistry, Article ID 6730305, 14 p. DOI: 10.1155/2019/6730305.10.1155/2019/6730305]Search in Google Scholar
[ALLOWAY, B.J. 2013. Sources of heavy metals and metalloids in soils. In ALLOWAY, B.J. (Ed.) Heavy Metals in Soils. Dordrecht : Environmen. Springer, pp. 11 –50.]Search in Google Scholar
[BETTINELLI, M. – BEONE, G.M. – SPEZIA, S. – BAFFI, C. 2000. Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spektrometry analysis. In Analytica Chimica Acta, vol. 424, pp. 89–296. DOI: 10.1016/S0003-2670(00)01123-5.10.1016/S0003-2670(00)01123-5]Search in Google Scholar
[BONELLI, M.G. – FERRINI, M. – MANNI, A. 2017. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. in Chemosphere, vol. 186, pp. 124 –131. doi: 10.1016/j.chemosphere.2017.07.11610.1016/j.chemosphere.2017.07.11628772179]Search in Google Scholar
[DING, L. – WANG, S. – CAI, B. et al. 2018. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis. In IOP Conference Series: Earth and Environmental Science, vol. 121, pp. 032031. DOI: 10.1088/1755-1315/121/3/032031.10.1088/1755-1315/121/3/032031]Search in Google Scholar
[FRAHM, E. – MONNIER, G.F. – JELINSKI, N.A. – FLEMING, E.P. – BARBER, B.L. – LAMBON, J.B. 2016. Chemical soil surveys at the Bremer Site (Dakota county, Minnesota, USA): Measuring phosphorus content of sediment by portable XRF and ICP-OES. In Journal of Archeological Science, vol. 75, pp. 115 –138. DOI: 10.1016/j.jas.2016.10.004.10.1016/j.jas.2016.10.004]Search in Google Scholar
[HAVUKAINEN, J. – HILTUNEN, J. – PURO, L. – HORTTANAINEN, M. 2019. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples. In Waste Management, vol. 83, pp. 6–13. DOI:10.1016/j.wasman.2018.10.039.10.1016/j.wasman.2018.10.03930514472]Search in Google Scholar
[HORTA, A. – MALONE, B. – STOCKMANN, U. et al. 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. In Geoderma, vol. 241–242, pp. 180–209. DOI: 10.1016/j.geoderma.2014.11.024.10.1016/j.geoderma.2014.11.024]Search in Google Scholar
[HU, B. – CHEN, S. – HU, J. et al. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. In PLoS ONE, vol. 12, pp. 1–13. DOI: 10.1371/journal.pone.0172438.10.1371/journal.pone.0172438532527828234944]Search in Google Scholar
[HU, W. – HUANG, B. – WEINDORF, D.C. – CHEN, Y. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. In Bulletin of Environmental Contamination and Toxicology, vol. 92, pp. 420–426. DOI:10.1007/s00128-014-1236-3.10.1007/s00128-014-1236-324585255]Search in Google Scholar
[JENKINS, R. 1999. X-Ray Fluorescence Spectrometry, 2nd Edition. Weinheim : Wiley-VCH, 232 p.10.1002/9781118521014]Search in Google Scholar
[KIM, S.M. – CHOI, Y. 2017. Assessing statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF data. In International Journal of Environmental Research and Public Health, vol. 14, pp. 654. DOI: 10.3390/ijerph14060654.10.3390/ijerph14060654548634028629168]Search in Google Scholar
[KODOM, K. – PREKO, K. – BOAMAH, D. 2012. X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. In soil and Sediment Contamination, vol. 21, pp. 1006–1021. DOI: 10.1080/15320383.2012.712073.10.1080/15320383.2012.712073]Search in Google Scholar
[LILLI, M.A. – MORAETIS, D. – NIKOLAIDIS, N.P. et al. 2015. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin. In Journal of Hazardous Materials, vol. 281, pp. 12–19. DOI: 10.1016/j.jhazmat.2014.07.037.10.1016/j.jhazmat.2014.07.03725103879]Search in Google Scholar
[LOKESHWARI, H. – CHANDRAPPA, G.T. 2006. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. In Current Science, vol. 91, pp. 622–627.]Search in Google Scholar
[MALIKI, A.A. – AL-LAMI, A.K. – HUSSAIN, H.M. – ALANSARI, N. 2017. Comparison betle inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples. In Environmental Earth Sciences, vol. 76, pp. 433. DOI: 10.1007/s12665-017-6753-z.10.1007/s12665-017-6753-z]Search in Google Scholar
[MCCOMB, J.Q. – ROGERS, C. – HAN, F.X. – TCHOUNWOU, P.B. 2014. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study. In Water, Air, & Soil Pollution, vol. 225, no. 2169. DOI:10.1007/s11270-014-2169-5.10.1007/s11270-014-2169-5438675325861136]Search in Google Scholar
[MCINTOSH, K. – GUIMARĀES, D. – CUSACK, M.J. – VERSHININ, A. – CHEN, Z.W. – YANG, K. – PARSONS, P.J. 2016. Evaluation of portable XRF instrumentation for assessing potential environmental exposure to toxic elements. In International Journal of Environmental Analytical Chemistry, vol. 96, pp. 15–37. DOI: 10.1080/03067319.2015.1114104.10.1080/03067319.2015.1114104797840533746339]Search in Google Scholar
[MCLAREN, T.I. – GUPPY, C.N. – TIGHE, M.K. 2012. A rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. In Soil Science Society of America Journal, vol. 76, pp. 1446–1453. DOI: 10.2136/sssaj2011.0355.10.2136/sssaj2011.0355]Search in Google Scholar
[MELOUN, M. – MILITKÝ, J. 2011. Statistical data analysis, a practical guide with 1250 exercises and answer key on CD. New Delhi, India: Woodhead Publishing, 773 p.10.1533/9780857097200]Search in Google Scholar
[MENŠÍK, L. – KUNZOVÁ, E. – HLISNIKOVSKÝ, L. et al. 2019. Vývoj kalibračních rovnic pro stanovení rizikových prvků a látek v aluviálních půdách řek Mže a Otavy prostřednictvím mobilního XRF přístroje (Development of calibration equations for determination of risk elements in alluvial soils of river Mze and Otava by means of mobile XRF instrument). Praha: Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 – Ruzyně, 24 p.]Search in Google Scholar
[PAULETTE, L. – MAN, T. – WEINDORF, D.C. – PERSON, T. 2015. Rapid assessment of soil and kontaminant variability via portable x-ray fluorescence spectroscopy: Copᶊa Mică, Romania. In Geoderma, vol. 243, pp. 130–140. DOI: 10.1016/j.geoderma.2014.12.025.10.1016/j.geoderma.2014.12.025]Search in Google Scholar
[PAVELEY, C.F. – DAVIES, B.E. – JONES, K. 1988. Comparison of results obtained by x-ray fluorescence of the total soil and the atomic absorption spectrometry assay of an acid digest in the routine determination of lead and zinc in soils. In Communications in Soil Science and Plant Analysis, vol. 19, pp. 107–116. DOI: 10.1080/00103628809367923.10.1080/00103628809367923]Search in Google Scholar
[QU, M. – CHEN, J. – LI, W. – ZHANG, C. – WAN, M. – HUANG, B. – ZHAO, Y. 2019. Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. In Environmental Pollution, vol. 254, 112993. DOI:10.1016/j.envpol.2019.112993.10.1016/j.envpol.2019.11299331401521]Search in Google Scholar
[RAN, J. – WANG, D. – WANG, C. – ZHANG, G. – YAO, L. 2014. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. In Environmental Science: Processes & Impacts, vol. 16, pp. 1870–1877. DOI: 10.1039/c4em00172a.10.1039/C4EM00172A]Search in Google Scholar
[ROUILLON, M. – TAYLOR, M.P. 2016. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? In Environmental Pollution, vol. 214, pp. 255–264. DOI: 10.1016/j.envpol.2016.03.055.10.1016/j.envpol.2016.03.05527100216]Search in Google Scholar
[SHUTTLEWORTH, E.L. – EVANS, M.G. – HUTCHINSON, S.M. – ROTHWELL, J.J. 2014. assessment of lead contamination in Peatlands using field portable XRF. In Water, Air, & Soil Pollution, vol. 225, 11844. DOI:10.1007/s11270-013-1844-2.10.1007/s11270-013-1844-2]Search in Google Scholar
[WAN, M. – HU, W. – QU, M. – TIAN, K. – ZHANG, H. – WANG, Y. – HUANG, B. 2019. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. In Ecological Indicators, vol. 101, pp. 583–594. DOI: 10.1016/j.ecolind.2019.01.069.10.1016/j.ecolind.2019.01.069]Search in Google Scholar
[WANG, B. – YU, J. – HUANG, B. et al. 2015. Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer. In Spectroscopy and Spectral Analysis, vol. 35, pp. 735–1740. DOI: 10.3964/j.issn.1000-0593(2015)06-1735-06.]Search in Google Scholar
[WIECZOREK-DABROWSKA, M. – TOMZA-MARCINIAK, A. – PILARCZYK, B. – BALICKA-RAMISZ, A. 2013. Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. In Chemistry and Ecology, vol. 29, pp. 100–110. DOI: 10.1080/02757540.2012.711322.10.1080/02757540.2012.711322]Search in Google Scholar
[ZBÍRAL, J. – HONSA, I. – MALÝ, S. 1997. Analýza půd III. Jednotné pracovní postupy (Soil Analysis III. Unified Working Procedures). Brno : ÚKZUZ, Brno, 150 p.]Search in Google Scholar