1. bookVolume 66 (2020): Edizione 1 (April 2020)
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-4376
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Possibilities of Determination of Risk Elements in Alluvial Agriculture Soils in the Mže and Otava River Basins by X-Ray Fluorescence Spectrometry

Pubblicato online: 11 May 2020
Volume & Edizione: Volume 66 (2020) - Edizione 1 (April 2020)
Pagine: 15 - 23
Ricevuto: 26 Nov 2019
Accettato: 23 Mar 2020
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-4376
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

ADLER, K. – PIIKKI, K. – SÖDERSTRÖM, M. – ERIKSSON, J. – ALSHIHABI, O. 2020. Predictions of Cu, Zn, and Cd concentrations in soil using portable X-Ray fluorescence measurements. in Sensors, vol. 20, no. 2, pp. 474. DOI: 10.3390/s20020474.10.3390/s20020474Search in Google Scholar

ALI, H. – KHAN, E. – ILAHI, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. In Journal of Chemistry, Article ID 6730305, 14 p. DOI: 10.1155/2019/6730305.10.1155/2019/6730305Search in Google Scholar

ALLOWAY, B.J. 2013. Sources of heavy metals and metalloids in soils. In ALLOWAY, B.J. (Ed.) Heavy Metals in Soils. Dordrecht : Environmen. Springer, pp. 11 –50.Search in Google Scholar

BETTINELLI, M. – BEONE, G.M. – SPEZIA, S. – BAFFI, C. 2000. Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spektrometry analysis. In Analytica Chimica Acta, vol. 424, pp. 89–296. DOI: 10.1016/S0003-2670(00)01123-5.10.1016/S0003-2670(00)01123-5Search in Google Scholar

BONELLI, M.G. – FERRINI, M. – MANNI, A. 2017. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. in Chemosphere, vol. 186, pp. 124 –131. doi: 10.1016/j.chemosphere.2017.07.11610.1016/j.chemosphere.2017.07.11628772179Search in Google Scholar

DING, L. – WANG, S. – CAI, B. et al. 2018. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis. In IOP Conference Series: Earth and Environmental Science, vol. 121, pp. 032031. DOI: 10.1088/1755-1315/121/3/032031.10.1088/1755-1315/121/3/032031Search in Google Scholar

FRAHM, E. – MONNIER, G.F. – JELINSKI, N.A. – FLEMING, E.P. – BARBER, B.L. – LAMBON, J.B. 2016. Chemical soil surveys at the Bremer Site (Dakota county, Minnesota, USA): Measuring phosphorus content of sediment by portable XRF and ICP-OES. In Journal of Archeological Science, vol. 75, pp. 115 –138. DOI: 10.1016/j.jas.2016.10.004.10.1016/j.jas.2016.10.004Search in Google Scholar

HAVUKAINEN, J. – HILTUNEN, J. – PURO, L. – HORTTANAINEN, M. 2019. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples. In Waste Management, vol. 83, pp. 6–13. DOI:10.1016/j.wasman.2018.10.039.10.1016/j.wasman.2018.10.03930514472Search in Google Scholar

HORTA, A. – MALONE, B. – STOCKMANN, U. et al. 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. In Geoderma, vol. 241–242, pp. 180–209. DOI: 10.1016/j.geoderma.2014.11.024.10.1016/j.geoderma.2014.11.024Search in Google Scholar

HU, B. – CHEN, S. – HU, J. et al. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. In PLoS ONE, vol. 12, pp. 1–13. DOI: 10.1371/journal.pone.0172438.10.1371/journal.pone.0172438532527828234944Search in Google Scholar

HU, W. – HUANG, B. – WEINDORF, D.C. – CHEN, Y. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. In Bulletin of Environmental Contamination and Toxicology, vol. 92, pp. 420–426. DOI:10.1007/s00128-014-1236-3.10.1007/s00128-014-1236-324585255Search in Google Scholar

JENKINS, R. 1999. X-Ray Fluorescence Spectrometry, 2nd Edition. Weinheim : Wiley-VCH, 232 p.10.1002/9781118521014Search in Google Scholar

KIM, S.M. – CHOI, Y. 2017. Assessing statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF data. In International Journal of Environmental Research and Public Health, vol. 14, pp. 654. DOI: 10.3390/ijerph14060654.10.3390/ijerph14060654548634028629168Search in Google Scholar

KODOM, K. – PREKO, K. – BOAMAH, D. 2012. X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. In soil and Sediment Contamination, vol. 21, pp. 1006–1021. DOI: 10.1080/15320383.2012.712073.10.1080/15320383.2012.712073Search in Google Scholar

LILLI, M.A. – MORAETIS, D. – NIKOLAIDIS, N.P. et al. 2015. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin. In Journal of Hazardous Materials, vol. 281, pp. 12–19. DOI: 10.1016/j.jhazmat.2014.07.037.10.1016/j.jhazmat.2014.07.03725103879Search in Google Scholar

LOKESHWARI, H. – CHANDRAPPA, G.T. 2006. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. In Current Science, vol. 91, pp. 622–627.Search in Google Scholar

MALIKI, A.A. – AL-LAMI, A.K. – HUSSAIN, H.M. – ALANSARI, N. 2017. Comparison betle inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples. In Environmental Earth Sciences, vol. 76, pp. 433. DOI: 10.1007/s12665-017-6753-z.10.1007/s12665-017-6753-zSearch in Google Scholar

MCCOMB, J.Q. – ROGERS, C. – HAN, F.X. – TCHOUNWOU, P.B. 2014. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study. In Water, Air, & Soil Pollution, vol. 225, no. 2169. DOI:10.1007/s11270-014-2169-5.10.1007/s11270-014-2169-5438675325861136Search in Google Scholar

MCINTOSH, K. – GUIMARĀES, D. – CUSACK, M.J. – VERSHININ, A. – CHEN, Z.W. – YANG, K. – PARSONS, P.J. 2016. Evaluation of portable XRF instrumentation for assessing potential environmental exposure to toxic elements. In International Journal of Environmental Analytical Chemistry, vol. 96, pp. 15–37. DOI: 10.1080/03067319.2015.1114104.10.1080/03067319.2015.1114104797840533746339Search in Google Scholar

MCLAREN, T.I. – GUPPY, C.N. – TIGHE, M.K. 2012. A rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. In Soil Science Society of America Journal, vol. 76, pp. 1446–1453. DOI: 10.2136/sssaj2011.0355.10.2136/sssaj2011.0355Search in Google Scholar

MELOUN, M. – MILITKÝ, J. 2011. Statistical data analysis, a practical guide with 1250 exercises and answer key on CD. New Delhi, India: Woodhead Publishing, 773 p.10.1533/9780857097200Search in Google Scholar

MENŠÍK, L. – KUNZOVÁ, E. – HLISNIKOVSKÝ, L. et al. 2019. Vývoj kalibračních rovnic pro stanovení rizikových prvků a látek v aluviálních půdách řek Mže a Otavy prostřednictvím mobilního XRF přístroje (Development of calibration equations for determination of risk elements in alluvial soils of river Mze and Otava by means of mobile XRF instrument). Praha: Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 – Ruzyně, 24 p.Search in Google Scholar

PAULETTE, L. – MAN, T. – WEINDORF, D.C. – PERSON, T. 2015. Rapid assessment of soil and kontaminant variability via portable x-ray fluorescence spectroscopy: Copᶊa Mică, Romania. In Geoderma, vol. 243, pp. 130–140. DOI: 10.1016/j.geoderma.2014.12.025.10.1016/j.geoderma.2014.12.025Search in Google Scholar

PAVELEY, C.F. – DAVIES, B.E. – JONES, K. 1988. Comparison of results obtained by x-ray fluorescence of the total soil and the atomic absorption spectrometry assay of an acid digest in the routine determination of lead and zinc in soils. In Communications in Soil Science and Plant Analysis, vol. 19, pp. 107–116. DOI: 10.1080/00103628809367923.10.1080/00103628809367923Search in Google Scholar

QU, M. – CHEN, J. – LI, W. – ZHANG, C. – WAN, M. – HUANG, B. – ZHAO, Y. 2019. Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. In Environmental Pollution, vol. 254, 112993. DOI:10.1016/j.envpol.2019.112993.10.1016/j.envpol.2019.11299331401521Search in Google Scholar

RAN, J. – WANG, D. – WANG, C. – ZHANG, G. – YAO, L. 2014. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. In Environmental Science: Processes & Impacts, vol. 16, pp. 1870–1877. DOI: 10.1039/c4em00172a.10.1039/C4EM00172ASearch in Google Scholar

ROUILLON, M. – TAYLOR, M.P. 2016. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? In Environmental Pollution, vol. 214, pp. 255–264. DOI: 10.1016/j.envpol.2016.03.055.10.1016/j.envpol.2016.03.05527100216Search in Google Scholar

SHUTTLEWORTH, E.L. – EVANS, M.G. – HUTCHINSON, S.M. – ROTHWELL, J.J. 2014. assessment of lead contamination in Peatlands using field portable XRF. In Water, Air, & Soil Pollution, vol. 225, 11844. DOI:10.1007/s11270-013-1844-2.10.1007/s11270-013-1844-2Search in Google Scholar

WAN, M. – HU, W. – QU, M. – TIAN, K. – ZHANG, H. – WANG, Y. – HUANG, B. 2019. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. In Ecological Indicators, vol. 101, pp. 583–594. DOI: 10.1016/j.ecolind.2019.01.069.10.1016/j.ecolind.2019.01.069Search in Google Scholar

WANG, B. – YU, J. – HUANG, B. et al. 2015. Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer. In Spectroscopy and Spectral Analysis, vol. 35, pp. 735–1740. DOI: 10.3964/j.issn.1000-0593(2015)06-1735-06.Search in Google Scholar

WIECZOREK-DABROWSKA, M. – TOMZA-MARCINIAK, A. – PILARCZYK, B. – BALICKA-RAMISZ, A. 2013. Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. In Chemistry and Ecology, vol. 29, pp. 100–110. DOI: 10.1080/02757540.2012.711322.10.1080/02757540.2012.711322Search in Google Scholar

ZBÍRAL, J. – HONSA, I. – MALÝ, S. 1997. Analýza půd III. Jednotné pracovní postupy (Soil Analysis III. Unified Working Procedures). Brno : ÚKZUZ, Brno, 150 p.Search in Google Scholar

Articoli consigliati da Trend MD