[AKDENIZ, N. 2019. A systematic review of biochar use in animal waste composting. In Waste Management, vol. 88, pp. 291–300. DOI: 10.1016/j.wasman.2019.03.054.10.1016/j.wasman.2019.03.05431079642]Search in Google Scholar
[AWASTHI, M.K. – CHEN, H. – WANG, Q. – LIU, T. – DUAN, Y. – AWASTHI, S.K. – ZHANG, Z. 2018. Succession of bacteria diversity in the poultry manure composted mixed with clay: Studies upon its dynamics and associations with physicochemical and gaseous parameters. In Bioresource Technology, vol. 267, pp. 618 –625. DOI: 10.1016/j.biortech.2018.07.094.10.1016/j.biortech.2018.07.09430056372]Search in Google Scholar
[AWASTHI, S.K. – SARSAIYA, S. – AWASTHI, M.K. – LIU, T. – ZHAO, J. – KUMAR, S. – ZHANG, Z. 2019. Changes in global trends in food waste composting: Research challenges and opportunities. In Bioresource Technology, vol. 299. DOI: 10.1016/j.biortech.2019.122555.10.1016/j.biortech.2019.12255531866141]Search in Google Scholar
[BEFFA, T. – BLANC, M. – MARILLEY, L. – FISCHER, J.L. – LYON, P.-F. – ARAGNO, M. 1996. Taxonomic and metabolic microbial diversity during composting. In The Science of Composting, pp. 149–161. DOI: 10.1007/978-94-009-1569-5_16.10.1007/978-94-009-1569-5_16]Search in Google Scholar
[BERNAL, M. – ALBURQUERQUE, J. – MORAL, R. 2009. Composting of animal manure and chemical criteria for compost maturity assessment. A review. In Bioresource Technology, vol. 100, no. 22, pp. 5444–5453. DOI:10.1016/j.biortech.2008.11.027.10.1016/j.biortech.2008.11.02719119002]Search in Google Scholar
[BLINNIKOV, MS. 2011. A geography of Russia and its neighbours. New York, USA : Guilford Press. 448 p. ISBN 9781606239209.]Search in Google Scholar
[BOGAARD, A. – FRASER, R. – HEATON, T.H.E. – WALLACE, M. – VAIGLOVA, P. – CHARLES, M. – JONES, G. – EVERSHED, R.P. – STYRING, A.K. – ANDERSEN, N.H. – ARBOGAST, R. – BARTOSIEWICZ, L. – GARDEISEN, A. – KANSTRUP, M. – MAIER, U. – MARINOVA, E. – NINOV, L. – SCHÄFER, M. – STEPHAN, E. 2013. Crop manuring and intensive land management by Europe’s first farmers. In Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp.12589–12594.]Search in Google Scholar
[BUCCHIGNANI, E. – MONTESARCHIO, M. – CATTANEO, L. – MANZI, M.P. – MERCOGLIANO, P. 2014. Regional climate modelling over China with COSMO-CLM: Performance assessment and climate projections. In Journal of Geophysical Research: Atmospheres, vol. 119, no. 21. DOI:10.1002/2014jd022219.10.1002/2014JD022219]Search in Google Scholar
[CERDA, A. – ARTOLA, A. – FONT, X. – BARRENA, R. – GEA, T. – SÁNCHEZ, A. 2018. Composting of food wastes: Status and challenges. In Bioresource Technology, vol. 248, pp. 57–67. DOI: 10.1016/j.biortech.2017.06.133.10.1016/j.biortech.2017.06.13328693949]Search in Google Scholar
[CHAUDHARY, D.K. – KIM, J. 2019. New insights into bioremediation strategies for oil-contaminated soil in cold environments. In International Biodeterioration & Biodegradation, vol. 142, pp. 58–72. DOI: 10.1016/j.ibiod.2019.05.001.10.1016/j.ibiod.2019.05.001]Search in Google Scholar
[CUI, H.-Y. – ZHANG, S.-B. – ZHAO, M.-Y. – ZHAO, Y. – WEI, Z.-M. 2020. Parallel faction analysis combined with two-dimensional correlation spectroscopy reveal the characteristics of mercury-composting-derived dissolved organic matter interactions. In Journal of Hazardous Materials, vol. 384, 121395. DOI: 10.1016/j.jhazmat.2019.121395.10.1016/j.jhazmat.2019.12139531628057]Search in Google Scholar
[CZEKAŁA, W. – MALIŃSKA, K. – CÁCERES, R. – JANCZAK, D. – DACH, J. – LEWICKI, A. 2016. Co-composting of poultry manure mixtures amended with biochar – The effect of biochar on temperature and C-CO2 emission. In Bioresource Technology, vol. 200, pp. 921–927. DOI:10.1016/j.biortech.2015.11.019.10.1016/j.biortech.2015.11.01926609949]Search in Google Scholar
[DABNEY, S.M. – DELGADO, J.A. – REEVES, D.W. 2001. Using winter cover crops to improve soil and water quality. In Communication in Soil Science and Plant Analysis, vol. 32, no. 7− 8, pp. 1221–1250. DOI: 10.1081/css-100104110.10.1081/CSS-100104110]Search in Google Scholar
[EL-NAGGAR, A. – LEE, S.S. – RINKLEBE, J. – FAROOQ, M. – SONG, H. – SARMAH, A.K. – OK, Y.S. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. In Geoderma, vol. 337, pp. 536–554. DOI: 10.1016/j.geoderma.2018.09.034.10.1016/j.geoderma.2018.09.034]Search in Google Scholar
[ENGLER, C.R. – JORDAN, E.R. – MCFARLAND, M.J. – LACEWELL, R.D.1999. Economics and environmental impact of biogas production as a manure management strategy. In Texas Aanimal Manure Management Conference : proceedings. College Station, TX, USA: Texas A & M University.]Search in Google Scholar
[FOURTI, O. 2013. The maturity tests during the composting of municipal solid wastes. In Resources Conservation and Recycling, vol. 72, pp. 43 –49. DOI: 10.1016/j.resconrec.2012.12.001.10.1016/j.resconrec.2012.12.001]Search in Google Scholar
[GOU, C. – WANG, Y. – ZHANG, X. – LOU, Y. – GAO, Y. 2017. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions. In Bioresource Technology, vol. 243, pp. 339–346. DOI: 10.1016/j.biortech.2017.06.097.10.1016/j.biortech.2017.06.097]Search in Google Scholar
[GUO, X.-X. – LIU, H.-T. – ZHANG, J. 2020. The role of biochar in organic waste composting and soil improvement: A review. In Waste Management, vol. 102, pp. 884–899. DOI: 10.1016/j.wasman.2019.12.003.10.1016/j.wasman.2019.12.003]Search in Google Scholar
[HE, Z. – PAGLIARI, P.H. – WALDRIP, H.M. 2016. Applied and environmental chemistry of animal manure: A Review. In Pedosphere, vol. 26, no. 6, pp. 779–816. DOI: 10.1016/s1002-0160(15)60087-x.10.1016/S1002-0160(15)60087-X]Search in Google Scholar
[HORN, H.V. – WILKIE, A. – POWERS, W. – NORDSTEDT, R. 1994. Components of dairy manure management Systems. In Journal of Dairy Science, vol. 77, no. 7, pp. 2008–2030. DOI: 10.3168/jds.s0022-0302 (94)77147-2.]Search in Google Scholar
[HOU, N. – WEN, L. – CAO, H. – LIU, K. – AN, X. – LI, D. – LI, C. 2017. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China. In Bioresource Technology, vol. 236, pp. 20 –28. DOI: 10.1016/j.biortech.2017.03.166.10.1016/j.biortech.2017.03.16628390273]Search in Google Scholar
[HU, Y. – CHENG, H. – TAO, S. 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. In Environment International, vol. 107, pp. 111 –130. DOI: 10.1016/j.envint.2017.07.003.10.1016/j.envint.2017.07.00328719840]Search in Google Scholar
[JIANG, J. – LIU, X. – HUANG, Y. – HUANG, H. 2015. Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. In Waste Management, vol. 39, pp. 78 –85. DOI: 10.1016/j.wasman.2015.02.025.10.1016/j.wasman.2015.02.02525769536]Search in Google Scholar
[JURADO, M. – LÓPEZ, M.J. – SUÁREZ-ESTRELLA, F. – VARGAS-GARCÍA, M.C. – LÓPEZ-GONZÁLEZ, J.A. – MORENO, J. 2014. Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. In Bioresource Technology, vol. 162, pp. 283–293. DOI: 10.1016/j.biortech.2014.03.145.10.1016/j.biortech.2014.03.14524759645]Search in Google Scholar
[KIANIRAD, M. – MUAZARDALAN, M. – SAVAGHEBI, G. – FARAHBAKHSH, M. – MIRDAMADI, S. 2009. Effects of temperature treatment on corncob composting and reducing of composting time: a comparative study. In Waste Management & Research, vol. 28, no. 10, pp. 882–887. DOI:10.1177/0734242x09342359.10.1177/0734242X0934235919710112]Search in Google Scholar
[KOVÁČIK, P. – KOZÁNEK, M. – TAKÁČ, P. – GALLIKOVÁ, M. – VARGA, L. 2010. The effect of pig manure fermented by larvae of houseflies on the yield parameters of sunflowers (Helinthus annul L.). In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. LVIII (58), no. 2, pp. 147–153.]Search in Google Scholar
[KOVÁČIK, P. – ŽOFAJOVÁ, A. – ŠIMANSKÝ, V. – HALÁSZOVÁ, K. 2016. Spring barley yield parameters after lignite, sodium humate and nitrogen utilization. In Agriculture (Poľnohospodárstvo), vol. 62, no. 3, pp. 80–89. DOI: 10.1515/agri-2016-0009.10.1515/agri-2016-0009]Search in Google Scholar
[LI, H. – LU, J. – ZHANG, Y. – LIU, Z. 2018. Hydrothermal liquefaction of typical livestock manure in China: Biocrude oil production and migration of heavy metals. In Journal of Analytical and Applied Pyrolysis, vol. 135, pp. 133–140. DOI: 10.1016/j.jaap.2018.09.010.10.1016/j.jaap.2018.09.010]Search in Google Scholar
[LI, J. – BAO, H. – XING, W. – YANG, J. – LIU, R. – WANG, X. – WU, F. 2019. Succession of fungal dynamics and their influence on physicochemical parameters during pig manure composting employing with pine leaf biochar. In Bioresource Technology, vol. 297, 122377. DOI: 10.1016/j.biortech.2019.122377.10.1016/j.biortech.2019.12237731734062]Search in Google Scholar
[LI, S.Q. – YAN, L. – XU, J.G. – LIU, D.Y. 2012. Nitrogen transformation during pig manure composting at low temperature. In Advanced Material Research, vol. 433–440, pp. 1226 –1231. DOI: 10.4028/www.scientific.net/amr.433-440.1226.10.4028/www.scientific.net/AMR.433-440.1226]Search in Google Scholar
[LIU, H. – WANG, L. – LEI, M. 2019. Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. In Bioresource Technology, vol. 273, pp. 25–33. DOI: 10.1016/j.biortech.2018.10.033.10.1016/j.biortech.2018.10.03330399607]Search in Google Scholar
[LIU, L. – WANG, S. – GUO, X. – ZHAO, T. – ZHANG, B. 2018. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. In Waste Management, vol. 73, pp. 101–112. DOI: 10.1016/j.wasman.2017.12.026.10.1016/j.wasman.2017.12.02629279244]Search in Google Scholar
[LOYON, L. 2017. Overview of manure treatment in France. In Waste Management, vol. 61, pp. 516 –520. DOI: 10.1016/j.wasman.2016.11.040.10.1016/j.wasman.2016.11.04027955906]Search in Google Scholar
[MAAYER, P.D. – ANDERSON, D. – CARY, C. – COWAN, D.A. 2014. Some like it cold: understanding the survival strategies of psychrophiles. In EMBO Reports, vol. 15, no. 5, pp. 508 –517. DOI: 10.1002/embr.201338170.10.1002/embr.201338170421008424671034]Search in Google Scholar
[MARGESIN, R. – CIMADOM, J. – SCHINNER, F. 2006. Biological activity during composting of sewage sludge at low temperatures. In International Biodeterioration & Biodegradation, vol. 57, no. 2, pp. 88–92. DOI: 10.1016/j.ibiod.2005.12.001.10.1016/j.ibiod.2005.12.001]Search in Google Scholar
[MASSÉ, D.I. – MASSE, L. 2001. The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors. In Bioresource Technology, vol. 76, no. 2, pp. 91–98. DOI: 10.1016/s0960-8524(00)00105-x.10.1016/S0960-8524(00)00105-X]Search in Google Scholar
[MINOBE, S. – KUWANO-YOSHIDA, A. – KOMORI, N. – XIE, S.-P. – SMALL, R.J. 2008. Influence of the Gulf Stream on the troposphere. In Nature, vol. 452, no. 7184, pp. 206 –209. DOI: 10.1038/nature06690.10.1038/nature0669018337820]Search in Google Scholar
[NAKAMURA, K. – HARUTA, S. – NGUYEN, H.L. – ISHII, M. – IGARASHI, Y. 2004. Enzyme production-based approach for determining the functions of microorganisms within a community. In Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3329–3337. DOI: 10.1128/aem.70.6.3329-3337.2004.10.1128/AEM.70.6.3329-3337.200442776115184128]Search in Google Scholar
[ONWOSI, C.O. – IGBOKWE, V.C. – ODIMBA, J.N. – EKE, I.E. – NWANKWOALA, M.O. – IROH, I.N. – EZEOGU, L.I. 2017. Composting technology in waste stabilization: On the methods, challenges and future prospects. In Journal of Environmental Management, vol. 190, pp. 140–157. DOI: 10.1016/j.jenvman.2016.12.051.10.1016/j.jenvman.2016.12.05128040590]Search in Google Scholar
[PHILIPPE, F.-X. – NICKS, B. 2015. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. In Agriculture, Ecosystem & Environment, vol. 199, pp. 10–25. DOI: 10.1016/j.agee.2014.08.015.10.1016/j.agee.2014.08.015]Search in Google Scholar
[PRATT, C. – REDDING, M. – HILL, J. – MUDGE, S.R. – WESTERMANN, M. – PAUNGFOO-LONHIENNE, C. – SCHMIDT, S. 2014. Assessing refrigerating and freezing effects on the biological/chemical composition of two livestock manure. In Agriculture, Ecosystem & Environment, vol. 197, pp. 288–292. DOI: 10.1016/j.agee.2014.08.012.10.1016/j.agee.2014.08.012]Search in Google Scholar
[REYES-TORRES, M. – OVIEDO-OCAÑA, E. – DOMINGUEZ, I. – KOMILIS, D. – SÁNCHEZ, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. In Waste Management, vol. 77, pp. 486–499. DOI: 10.1016/j.wasman.2018.04.037.10.1016/j.wasman.2018.04.03729709309]Search in Google Scholar
[RICO, C. – GARCÍA, H. – RICO, J. 2011. Physical–anaerobic–chemical process for treatment of dairy cattle manure. In Bioresource Technology, vol. 102, no. 3, pp. 2143 –2150. DOI: 10.1016/j.biortech.2010.10.068.10.1016/j.biortech.2010.10.06821051223]Search in Google Scholar
[RYCKEBOER, J. – MERGAERT, J. – COOSEMANS, J. – DEPRINS, K. – SWINGS, J. 2003. Microbiological aspects of biowaste during composting in monitored compost bin. In Journal of Applied Microbiology, vol. 94, no. 1, pp. 127–137. DOI: 10.1046/j.1365-2672.2003.01800.x.10.1046/j.1365-2672.2003.01800.x12492933]Search in Google Scholar
[SAADY, N.M.C. – MASSÉ, D.I. 2013. Psychrophilic anaerobic digestion of lignocellulosic biomass: A characterization study. In Bioresource Technology, vol. 142, pp. 663 –671. DOI: 10.1016/j.biortech.2013.05.089.10.1016/j.biortech.2013.05.08923796576]Search in Google Scholar
[SALUDES, R. – IWABUCHI, K. – KAYANUMA, A. – SHIGA, T. 2007. Composting of dairy cattle manure using a thermophilic–mesophilic sequence. In Biosystems Engineering, vol. 98, no. 2, pp. 198 –205. DOI: 10.1016/j.biosystemseng.2007.07.003.10.1016/j.biosystemseng.2007.07.003]Search in Google Scholar
[SÁNCHEZ, Ó.J. – OSPINA, D.A. – MONTOYA, S. 2017. Compost supplementation with nutrients and microorganisms in composting process. In Waste Management, vol. 69, pp. 136–153. DOI: 10.1016/j.wasman.2017.08.012.10.1016/j.wasman.2017.08.01228823698]Search in Google Scholar
[SANCHEZ-MONEDERO, M. – CAYUELA, M. – ROIG, A. – JINDO, K. – MONDINI, C. – BOLAN, N. 2018. Role of biochar as an additive in organic waste composting. In Bioresource Technology, vol. 247, pp. 1155–1164. DOI: 10.1016/j.biortech.2017.09.193.10.1016/j.biortech.2017.09.19329054556]Search in Google Scholar
[STEMPVOORT, D.V. – BIGGAR, K. 2008. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. In Cold Regions Science and Technology, vol. 53, no. 1, pp. 16 –41. DOI: 10.1016/j.coldregions.2007.06.009.10.1016/j.coldregions.2007.06.009]Search in Google Scholar
[SUBBOTIN, I. – BRIUKHANOV, A. – VASILEV, E. 2017. Factor analysis of environmental impact of manure utilization. In Engineering for Rural Development : Proceeding from 16. International Conference, pp. 625−629. DOI:10.22616/erdev2017.16.n124.10.22616/ERDev2017.16.N124]Search in Google Scholar
[SUN, Q. – CHEN, J. – WEI, Y. – ZHAO, Y. – WEI, Z. – ZHANG, H. – XIE, X. 2019. Effect of semi-continuous replacements of compost materials after inoculation on the performance of heat preservation of low temperature composting. In Bioresource Technology, vol. 279, pp. 50 –56. DOI: 10.1016/j.biortech.2019.01.090.10.1016/j.biortech.2019.01.09030711752]Search in Google Scholar
[SUN, Q. – WU, D. – ZHANG, Z. – ZHAO, Y. – XIE, X. – WU, J. – WEI, Z. 2017. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting startup at low temperature. In Bioresource Technology, vol. 244, pp. 635–640. DOI: 10.1016/j.biortech.2017.08.010.10.1016/j.biortech.2017.08.01028810218]Search in Google Scholar
[TIAN, X. – YANG, T. – HE, J. – CHU, Q. – JIA, X. – HUANG, J. 2017. Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues. In Bioresource Technology, vol. 241, pp. 374–383. DOI: 10.1016/j.biortech.2017.05.116.10.1016/j.biortech.2017.05.11628578278]Search in Google Scholar
[TRAN, Q.N.M. – MIMOTO, H. – NAKASAKI, K. 2015. Inoculation of lactic acid bacterium accelerates organic matter degradation during composting. In International Biodeterioration & Biodegradation, vol. 104, pp. 377–383. DOI:10.1016/j.ibiod.2015.07.007.10.1016/j.ibiod.2015.07.007]Search in Google Scholar
[WANG, K. – LI, W. – LI, Y. – GONG, X. – WU, C. – REN, N. 2013. The modelling of combined strategies to achieve thermophilic composting of sludge in cold region. In International Biodeterioration & Biodegradation, vol. 85, pp. 608–616. DOI: 10.1016/j.ibiod.2013.03.005.10.1016/j.ibiod.2013.03.005]Search in Google Scholar
[WANG, L. – WANG, L. – WANG, D. – LI, J. 2013. Isolation and application of thermophilic and psychrophilic microorganisms in the composting process. In Waste and Biomass Valorization, vol. 5, no. 3, pp. 433–440. DOI: 10.1007/s12649-013-9253-8.10.1007/s12649-013-9253-8]Search in Google Scholar
[WANG, P. – CHANGA, C. – WATSON, M. – DICK, W. – CHEN, Y. – HOITINK, H. 2004. Maturity indices for composted dairy and pig manure. In Soil Biology & Biochemistry, vol. 36, no. 5, pp. 767–776. DOI: 10.1016/j.soilbio.2003.12.012.10.1016/j.soilbio.2003.12.012]Search in Google Scholar
[WANG, X. – HELGASON, B. – WESTBROOK, C. – BEDARD-HAUGHN, A. 2016. Effect of mineral sediments on carbon mineralization, organic matter composition and microbial community dynamics in a mountain peatland. In Soil Biology & Biochemistry, vol. 103, pp. 16–27. DOI: 10.1016/j.soilbio.2016.07.025.10.1016/j.soilbio.2016.07.025]Search in Google Scholar
[WAQAS, M. – NIZAMI, A. – ABURIAZAIZA, A. – BARAKAT, M. – ASAM, Z. – KHATTAK, B. – RASHID, M. 2019. Untapped potential of zeolites in optimization of food waste composting. In Journal of Environmental Management, vol. 241, pp. 99– 112. DOI: 10.1016/j.jenvman.2019.04.014.10.1016/j.jenvman.2019.04.01430986667]Search in Google Scholar
[WEI, L. – SHUTAO, W. – JIN, Z. – TONG, X. 2014. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. In Bioresource Technology, vol. 154, pp. 148 –154. DOI: 10.1016/j.biortech.2013.12.022.10.1016/j.biortech.2013.12.02224384321]Search in Google Scholar
[WEI, Y. – LI, J. – SHI, D. – LIU, G. – ZHAO, Y. – SHIMAOKA, T. 2017. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. In Resource, Conservation & Recycling, vol. 122, pp. 51–65. DOI: 10.1016/j.resconrec.2017.01.024.10.1016/j.resconrec.2017.01.024]Search in Google Scholar
[WEI, Y. – ZHAO, Y. – ZHAO, X. – GAO, X. – ZHENG, Y. – ZUO, H. – WEI, Z. 2020. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. In Bioresource Technology, vol. 296, 122375. DOI: 10.1016/j.biortech.2019.122375.10.1016/j.biortech.2019.12237531734063]Search in Google Scholar
[WEI, Z. – XI, B. – ZHAO, Y. – WANG, S. – LIU, H. – JIANG, Y. 2007. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. In Chemosphere, vol. 68, no. 2, pp. 368–374. DOI: 10.1016/j.chemosphere.2006.12.067.10.1016/j.chemosphere.2006.12.06717313970]Search in Google Scholar
[WILLIAMS, R.T. – MARKS, P.J. 1991. Optimization of composting for explosives contaminated soil. Final Report. CETHA-TS-CR-91053. Washington DC : U.S. Army Corps of Engineers.10.21236/ADA246345]Search in Google Scholar
[XI, B. – ZHAO, X. – HE, X. – HUANG, C. – TAN, W. – GAO, R. – LI, D. 2016. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. In Bioresource Technolology, vol. 219, pp. 204–211. DOI: 10.1016/j.biortech.2016.07.120.10.1016/j.biortech.2016.07.12027494101]Search in Google Scholar
[XIAO, R. – AWASTHI, M.K. – LI, R. – PARK, J. – PENSKY, S.M. – WANG, Q. – ZHANG, Z. 2017. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. In Bioresource Technology, vol. 246, pp. 203–213. DOI: 10.1016/j.biortech.2017.07.090.10.1016/j.biortech.2017.07.090]Search in Google Scholar
[XIE, X.-Y. – ZHAO, Y. – SUN, Q.-H. – WANG, X.-Q. – CUI, H.-Y. – ZHANG, X. – WEI, Z.-M. 2017. A novel method for contributing to composting start-up at low temperature by inoculating cold-adapted microbial consortium. In Bioresource Technology, vol. 238, pp. 39–47. DOI: 10.1016/j.biortech.2017.04.036.10.1016/j.biortech.2017.04.036]Search in Google Scholar
[XU, Z. – WU, H. – WU, M. 2010. Energy performance and consumption for biogas heat pump air conditioner. In Energy, vol. 35, no. 12, pp. 5497–5502. DOI: 10.1016/j.energy.2010.01.040.10.1016/j.energy.2010.01.040]Search in Google Scholar
[YAO, Y. – HUANG, G. – AN, C. – CHEN, X. – ZHANG, P. – XIN, X. – AGNEW, J. 2019. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. In Renewable and Sustainable Energy Reviews, vol. 119, 109494. DOI: 10.1016/j.rser.2019.109494.10.1016/j.rser.2019.109494]Search in Google Scholar
[YAO, Y. – HUANG, G.H. – AN, C.J. – CHENG, G.H. – WEI, J. 2017. Effects of freeze–thawing cycles on desorption behaviors of PAH-contaminated soil in the presence of a biosurfactant: a case study in western Canada. In Environtal Science: Processes & Impacts, vol. 19, no. 6, pp. 874–882. DOI: 10.1039/c7em00084g.10.1039/C7EM00084G]Search in Google Scholar
[YU, X.-F. – BORJIGIN, Q. – GAO, J.-L. – WANG, Z.-G. – HU, S.-P. – BORJIGIN, N. – HAN, S.-C. 2019. Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures. In Journal of Integrative Agriculture, vol. 18, no. 8, pp. 1893–1904. DOI: 10.1016/s2095-3119(19)62609-2.10.1016/S2095-3119(19)62609-2]Search in Google Scholar
[ZHANG, C. – XU, Y. – ZHAO, M. – RONG, H. – ZHANG, K. 2018. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. In Journal of Hazardous Material, vol. 344, pp. 163–168. DOI: 10.1016/j.jhazmat.2017.10.01.7.]Search in Google Scholar
[ZHU, L. – WEI, Z. – YANG, T. – ZHAO, X. – DANG, Q. – CHEN, X. – ZHAO, Y. 2020. Core microorganisms promote the transformation of DOM fractions with different molecular weights to improve the stability during composting. In Bioresource Technology, vol. 299, 122575. DOI: 10.1016/j.biortech.2019.122575.10.1016/j.biortech.2019.12257531864086]Search in Google Scholar
[ZUBAIR, M. – WANG, S. – ZHANG, P. – YE, J. – LIANG, J. – NABI, M. – CAI, Y. 2020. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. In Bioresource Technology, vol. 301, 122823. DOI: 10.1016/j.biortech.2020.122823.10.1016/j.biortech.2020.12282331987489]Search in Google Scholar