[AHKAMI, A.H. – WHITE, R.A. – HANDAKUMBURA, P.P. – JANSSON, C. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. In Rhizosphere, vol. 3, no. 2, pp. 233 – 243. DOI: 10.1016/j.rhi-sph.2017.04.01210.1016/j.rhi-sph.2017.04.012]Apri DOISearch in Google Scholar
[ALLARD, S.M. – WALSH, C.S. – WALLIS, A.E. – OT-TESEN, A.R. – BROWN, E.W. – MICALLEF, S.A. 2016. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. In Science of the Total Environment, vol. 573, pp. 555 – 563. DOI: 10.1016/j.scitotenv.2016.08.15710.1016/j.scitotenv.2016.08.157]Apri DOISearch in Google Scholar
[BERENDSEN, R.L. – PIETERSE, C.M.J. – BAKKER, P.A.H.M. 2012. The rhizosphere microbiome and plant health. In Trends in Plant Science, vol. 17, no. 8, pp. 478 – 486. DOI: 10.1016/j.tplants.2012.04.00110.1016/j.tplants.2012.04.001]Apri DOISearch in Google Scholar
[CAI, F. – PANG, G. – MIAO, Y. – LI, R. – LI, R. – SHEN, Q. – CHEN, W. 2017. The nutrient preference of plants influences their rhizosphere microbiome. In Applied Soil Ecology, vol. 110, pp. 146 – 150. DOI: 10.1016/j.apsoil.2016.11.00610.1016/j.apsoil.2016.11.006]Apri DOISearch in Google Scholar
[CORDERO-RAMÍREZ, J.D. – LÓPEZ-RIVERA, R. – CALDERÓN-VÁZQUEZ, C.L. – FIGUEROA-LÓPEZ, A.MI. – MARTÍNEZ-ÁLVAREZ, J.C. – LEYVA-MADRIGAL, K.Y. – CERVANTES-GÁMEZ, R.G. – MALDONA-DO-MENDOZA, I.E. 2012. Microorganismos asociados a la rizosfera de jitomate en un agroecosistema del valle de Guasave, Sinaloa, México. In Revista Mexicana de Biodiversidad, vol. 83, no. 3, pp. 712 – 730. DOI: 10.7550/rmb.1789710.7550/rmb.17897]Apri DOISearch in Google Scholar
[EDGAR, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. In Nature Methods, vol. 10, pp. 996 – 998. DOI: 10.1038/nmeth.260410.1038/nmeth.2604]Search in Google Scholar
[EDGAR, R.C. 2016. SINTAX, a Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. bioRxiv., DOI: 10.1101/07416110.1101/074161]Apri DOISearch in Google Scholar
[FADROSH, D.W. – MA, B. – GAJER, P. – GAJER, P. – SENGAMALAY, N. – OTT, S. – BROTMAN, R.M. – RAVEL, J. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. In Microbiome, vol. 2, no. 1, pp. 6. DOI: 10.1186/2049-2618-2-610.1186/2049-2618-2-6]Apri DOISearch in Google Scholar
[FAUTH, E. – BERNARDO, J. – CAMARA, M. – RESETARITS, W.J. – VAN BUSKIRK, J. – MCCOLLUM, S.A. 1996. Simplifying the Jargon of community ecology: A conceptual approach. In The American Naturalist, vol. 147, pp. 282 – 286.]Search in Google Scholar
[HAMMER, Ø. – HARPER, D.A.T. – RYAN, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. In Palaeontologia Electronica, vol. 4, pp. 1 – 9.]Search in Google Scholar
[HUGHES, J.B. – HELLMANN, J.J. 2005. The application of rarefaction techniques to molecular inventories of microbial diversity. In Methods in Enzymology, vol. 397, pp. 292 – 308. https://doi.org/10.1016/S0076-6879(05)97017-110.1016/S0076-6879(05)97017-1]Apri DOISearch in Google Scholar
[IGOLKINA, А.А. – GREKHOV, G.A. – PERSHINA, E.V. – SAMOSOROVA, G.G. – LEUNOVA, V.M. – SEMENOVA, A.N. – BATURINA, O.A. – KABILOV, M.R. – ANDRONOV, E.E. 2018. Identifying components of mixed and contaminated soil samples by detecting specific signatures of control 16S rRNA libraries. In Ecoogical Indicators, vol. 94, no.1, pp. 446 – 453. DOI: 10.1016/j.ecolind.2018.06.06010.1016/j.ecolind.2018.06.060]Apri DOISearch in Google Scholar
[IUSS WORKING GROUP. 2014. WRB, World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO.]Search in Google Scholar
[KHAN, W. – BAKHT, J. – NAIR, M.G. – UDDIN, M.N. – SHAFI, M. 2018. Extraction and isolation of important bioactive compounds from the fruit of Physalis ixocarpa. In Pakistan Journal of Pharmaceutical Sciences, vol. 31, no. 6, pp. 2463 – 2469.]Search in Google Scholar
[KHAN, W. – BAKHT, J. – SHAFI, M. 2016. Antimicrobial potentials of different solvent extracted samples from Physalis ixocarpa. In Pakistan Journal of Pharmaceutical Sciences, vol. 29, no. 2, pp. 467 – 475.]Search in Google Scholar
[LEE, S.A. – PARK, J. – CHU, B. – KIM, J.M. – JOA, J.H. – SANG, M.K. – SONG, J. – WEON, H.Y. 2016. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. In Journal of Microbioogy, vol. 54, no. 12, pp. 823 – 831. DOI: 10.1007/s12275-016-6410-310.1007/s12275-016-6410-327888459]Apri DOISearch in Google Scholar
[LI, B. – CAO, Y. – GUAN, X. – LI, Y. – HAO, ZH. – HU, W. – CHEN, L. 2019. Microbial assessments of soil with a 40-year history of reclaimed wastewater irrigation. In Science of the Total Environment, vol. 651, no. 1, pp. 696 – 705. DOI: 10.1016/j.scitotenv.2018.09.19310.1016/j.scitotenv.2018.09.19330245425]Apri DOISearch in Google Scholar
[MARQUEZ-SANTACRUZ, H.A. – HERNANDEZ-LEON, R. – OROZCO-MOSQUEDA, M.C. – VELAZQUEZ-SEPULVEDA, I. – SANTOYO, G. 2010. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. In Genetic and Molecular Research, vol. 9, no. 4, pp. 2372 – 2380. DOI: 10.4238/vol9-4gmr92110.4238/vol9-4gmr92121157706]Apri DOISearch in Google Scholar
[MARTINES, M. – VARGAS-PONCE, O. – RODRIGUEZ, A. – CHIANG, F. – OCEGUEDA, S. 2017. Solanaceae family in Mexico. In Botanical Sciences, vol. 95, no. 1, pp. 1–15. DOI: 10.17129/botsci.65810.17129/botsci.658]Search in Google Scholar
[MORALES-CONTRERAS, B.E. – CONTRERAS-ESQUIVEL, J.C. – WICKER, L. – OCHOA-MARTÍNEZ, L.A. – MORALES-CASTRO, J. 2017. Husk Tomato (Physalis ixocarpa Brot.) Waste as a Promising Source of Pectin: Extraction and Physicochemical Characterization. In Journal of Food Science, vol. 82, no. 7, pp. 1594 – 1601. DOI: 10.1111/1750-3841.1376810.1111/1750-3841.1376828585703]Apri DOISearch in Google Scholar
[NAUMOVA, N.B. – SAVENKOV, O.A. – NECHAEVA, T.V. – FOTEV, Y.V. 2019. Yield and fruit properties of husk tomato (Physalis phyladelphica) cultivars grown in the open field in the South of West Siberia. In Horticulturae, vol. 5, no. 1, pp. 19. DOI: 10.3390/horticulturae501001910.3390/horticulturae5010019]Apri DOISearch in Google Scholar
[RAMÍREZ-GODINA, F. – ROBLEDO-TORRES, V. – FOROUGHBAKHCH-POURNABAV, R. – BENAVIDES-MENDOZA, A. – HERNÁNDEZ-PIÑERO, J.L. – REYES-VALDES, M.H. – ALVARADO-VÁZQUEZ, M.A. 2013. Yield and fruit quality evaluation in husk tomato autotetraploids (Physalis ixocarpa) and diploids. In Australian Journal of Crop Science, vol. 933, pp. 933 – 940.]Search in Google Scholar
[SALEEM, M. – LAW, A.D. – SAHIB, M.R. – PERVAIZ, Z.H. – ZHANG, Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. In Rhizosphere, vol. 6, no. 1, pp. 47 – 51. DOI: 10.1016/j.rhisph.2018.02.00310.1016/j.rhisph.2018.02.003]Apri DOISearch in Google Scholar
[SMITH, R. – JIMENEZ, M.– CANTWELL, M. 1999. Tomatillo production in California. Available at http://anrcatalog.ucanr.edu/pdf/7246.pdf (accessed July 23, 2019)10.3733/ucanr.7246]Search in Google Scholar
[VALDIVIA-MARES, L.E. – RODRÍGUEZ ZARAGOZA, F.A. – SÁNCHEZ GONZÁLEZ, J.J. – VARGAS-PONCE, O. 2016. Phenology, agronomic and nutritional potential of three wild husk tomato species (Physalis, Solanaceae) from Mexico. In Scientia Horticulturae, vol. 200, pp. 83 – 94. DOI: 10.1016/j.scienta.2016.01.00510.1016/j.scienta.2016.01.005]Apri DOISearch in Google Scholar
[WALLENSTEIN, M.D. 2017. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. In Rhizosphere, vol. 3, no. 2, pp. 230 – 232. DOI: 10.1016/j.rhisph.2017.04.00410.1016/j.rhisph.2017.04.004]Apri DOISearch in Google Scholar
[WANG, Q. – GARRITY, G.M. – TIEDJE, J.M. – COLE, J.R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. In Applied and Environmental Microbiology, vol. 73, pp. 5261 – 5267. DOI: 10.1128/AEM.00062-0710.1128/AEM.00062-07195098217586664]Apri DOISearch in Google Scholar
[WANG, M. – CHEN, L. – LI, Y. – CHEN, L. – LIU, ZH. – WANG, X. – YAN, P. – QIN, S. 2018. Responses of soil microbial communities to a short-term application of seaweed fertilizer revealed by deep amplicon sequencing. In Applied Soil Ecology, vol. 125, pp. 288 – 296. DOI: 10.1016/j.ap-soil.2018.02.01310.1016/j.ap-soil.2018.02.013]Apri DOISearch in Google Scholar
[XUE, D. – CHRISTENSON, R. – GENGER, R. – GEVENS, A. – LANKAU, R.A. 2018. Soil microbial communities reflect both inherent soil properties and management practices in Wisconsin potato fields. In American Journal of Potato Research, vol. 95, pp. 696. DOI: 10.1007/s12230-018-9677-610.1007/s12230-018-9677-6]Apri DOISearch in Google Scholar
[ZAMORA-TAVARES, P. – VARGAS-PONCE, O. – SANCHEZ-MARTINEZ, J. – CABRERA-TOLEDO, D. 2015. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. In Genetic Resources and Crop Evolution, vol. 62, pp. 141 – 153. DOI: 10.1007/s10722-014-0163-910.1007/s10722-014-0163-9]Apri DOISearch in Google Scholar
[ZHAO, Q. – ZENG, D.H. – FAN, Z.-P. 2010. Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil. In Applied Soil Ecology, vol. 46, pp. 341 – 346. DOI: 10.1016/j.apsoil.2010.10.00710.1016/j.apsoil.2010.10.007]Apri DOISearch in Google Scholar
[ZHENG, M. – GUO, J. – XU, J. – YANG, K. – TANG, R. – GU, X. – LI, H. – CHEN, L. 2019. Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. In Food & Function, vol. 10, no. 6, pp. 3386 – 3395. DOI: 10.1039/c9fo00394k10.1039/C9FO00394K]Search in Google Scholar