1. bookVolume 65 (2019): Edizione 4 (December 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-4376
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Rhizosphere Bacteriobiome of the Husk Tomato Grown in the Open Field in West Siberia

Pubblicato online: 16 Dec 2019
Volume & Edizione: Volume 65 (2019) - Edizione 4 (December 2019)
Pagine: 147 - 154
Ricevuto: 08 Aug 2019
Accettato: 11 Nov 2019
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-4376
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

AHKAMI, A.H. – WHITE, R.A. – HANDAKUMBURA, P.P. – JANSSON, C. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. In Rhizosphere, vol. 3, no. 2, pp. 233 – 243. DOI: 10.1016/j.rhi-sph.2017.04.01210.1016/j.rhi-sph.2017.04.012Apri DOISearch in Google Scholar

ALLARD, S.M. – WALSH, C.S. – WALLIS, A.E. – OT-TESEN, A.R. – BROWN, E.W. – MICALLEF, S.A. 2016. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. In Science of the Total Environment, vol. 573, pp. 555 – 563. DOI: 10.1016/j.scitotenv.2016.08.15710.1016/j.scitotenv.2016.08.157Apri DOISearch in Google Scholar

BERENDSEN, R.L. – PIETERSE, C.M.J. – BAKKER, P.A.H.M. 2012. The rhizosphere microbiome and plant health. In Trends in Plant Science, vol. 17, no. 8, pp. 478 – 486. DOI: 10.1016/j.tplants.2012.04.00110.1016/j.tplants.2012.04.001Apri DOISearch in Google Scholar

CAI, F. – PANG, G. – MIAO, Y. – LI, R. – LI, R. – SHEN, Q. – CHEN, W. 2017. The nutrient preference of plants influences their rhizosphere microbiome. In Applied Soil Ecology, vol. 110, pp. 146 – 150. DOI: 10.1016/j.apsoil.2016.11.00610.1016/j.apsoil.2016.11.006Apri DOISearch in Google Scholar

CORDERO-RAMÍREZ, J.D. – LÓPEZ-RIVERA, R. – CALDERÓN-VÁZQUEZ, C.L. – FIGUEROA-LÓPEZ, A.MI. – MARTÍNEZ-ÁLVAREZ, J.C. – LEYVA-MADRIGAL, K.Y. – CERVANTES-GÁMEZ, R.G. – MALDONA-DO-MENDOZA, I.E. 2012. Microorganismos asociados a la rizosfera de jitomate en un agroecosistema del valle de Guasave, Sinaloa, México. In Revista Mexicana de Biodiversidad, vol. 83, no. 3, pp. 712 – 730. DOI: 10.7550/rmb.1789710.7550/rmb.17897Apri DOISearch in Google Scholar

EDGAR, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. In Nature Methods, vol. 10, pp. 996 – 998. DOI: 10.1038/nmeth.260410.1038/nmeth.2604Search in Google Scholar

EDGAR, R.C. 2016. SINTAX, a Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. bioRxiv., DOI: 10.1101/07416110.1101/074161Apri DOISearch in Google Scholar

FADROSH, D.W. – MA, B. – GAJER, P. – GAJER, P. – SENGAMALAY, N. – OTT, S. – BROTMAN, R.M. – RAVEL, J. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. In Microbiome, vol. 2, no. 1, pp. 6. DOI: 10.1186/2049-2618-2-610.1186/2049-2618-2-6Apri DOISearch in Google Scholar

FAUTH, E. – BERNARDO, J. – CAMARA, M. – RESETARITS, W.J. – VAN BUSKIRK, J. – MCCOLLUM, S.A. 1996. Simplifying the Jargon of community ecology: A conceptual approach. In The American Naturalist, vol. 147, pp. 282 – 286.Search in Google Scholar

HAMMER, Ø. – HARPER, D.A.T. – RYAN, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. In Palaeontologia Electronica, vol. 4, pp. 1 – 9.Search in Google Scholar

HUGHES, J.B. – HELLMANN, J.J. 2005. The application of rarefaction techniques to molecular inventories of microbial diversity. In Methods in Enzymology, vol. 397, pp. 292 – 308. https://doi.org/10.1016/S0076-6879(05)97017-110.1016/S0076-6879(05)97017-1Apri DOISearch in Google Scholar

IGOLKINA, А.А. – GREKHOV, G.A. – PERSHINA, E.V. – SAMOSOROVA, G.G. – LEUNOVA, V.M. – SEMENOVA, A.N. – BATURINA, O.A. – KABILOV, M.R. – ANDRONOV, E.E. 2018. Identifying components of mixed and contaminated soil samples by detecting specific signatures of control 16S rRNA libraries. In Ecoogical Indicators, vol. 94, no.1, pp. 446 – 453. DOI: 10.1016/j.ecolind.2018.06.06010.1016/j.ecolind.2018.06.060Apri DOISearch in Google Scholar

IUSS WORKING GROUP. 2014. WRB, World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO.Search in Google Scholar

KHAN, W. – BAKHT, J. – NAIR, M.G. – UDDIN, M.N. – SHAFI, M. 2018. Extraction and isolation of important bioactive compounds from the fruit of Physalis ixocarpa. In Pakistan Journal of Pharmaceutical Sciences, vol. 31, no. 6, pp. 2463 – 2469.Search in Google Scholar

KHAN, W. – BAKHT, J. – SHAFI, M. 2016. Antimicrobial potentials of different solvent extracted samples from Physalis ixocarpa. In Pakistan Journal of Pharmaceutical Sciences, vol. 29, no. 2, pp. 467 – 475.Search in Google Scholar

LEE, S.A. – PARK, J. – CHU, B. – KIM, J.M. – JOA, J.H. – SANG, M.K. – SONG, J. – WEON, H.Y. 2016. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. In Journal of Microbioogy, vol. 54, no. 12, pp. 823 – 831. DOI: 10.1007/s12275-016-6410-310.1007/s12275-016-6410-327888459Apri DOISearch in Google Scholar

LI, B. – CAO, Y. – GUAN, X. – LI, Y. – HAO, ZH. – HU, W. – CHEN, L. 2019. Microbial assessments of soil with a 40-year history of reclaimed wastewater irrigation. In Science of the Total Environment, vol. 651, no. 1, pp. 696 – 705. DOI: 10.1016/j.scitotenv.2018.09.19310.1016/j.scitotenv.2018.09.19330245425Apri DOISearch in Google Scholar

MARQUEZ-SANTACRUZ, H.A. – HERNANDEZ-LEON, R. – OROZCO-MOSQUEDA, M.C. – VELAZQUEZ-SEPULVEDA, I. – SANTOYO, G. 2010. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. In Genetic and Molecular Research, vol. 9, no. 4, pp. 2372 – 2380. DOI: 10.4238/vol9-4gmr92110.4238/vol9-4gmr92121157706Apri DOISearch in Google Scholar

MARTINES, M. – VARGAS-PONCE, O. – RODRIGUEZ, A. – CHIANG, F. – OCEGUEDA, S. 2017. Solanaceae family in Mexico. In Botanical Sciences, vol. 95, no. 1, pp. 1–15. DOI: 10.17129/botsci.65810.17129/botsci.658Search in Google Scholar

MORALES-CONTRERAS, B.E. – CONTRERAS-ESQUIVEL, J.C. – WICKER, L. – OCHOA-MARTÍNEZ, L.A. – MORALES-CASTRO, J. 2017. Husk Tomato (Physalis ixocarpa Brot.) Waste as a Promising Source of Pectin: Extraction and Physicochemical Characterization. In Journal of Food Science, vol. 82, no. 7, pp. 1594 – 1601. DOI: 10.1111/1750-3841.1376810.1111/1750-3841.1376828585703Apri DOISearch in Google Scholar

NAUMOVA, N.B. – SAVENKOV, O.A. – NECHAEVA, T.V. – FOTEV, Y.V. 2019. Yield and fruit properties of husk tomato (Physalis phyladelphica) cultivars grown in the open field in the South of West Siberia. In Horticulturae, vol. 5, no. 1, pp. 19. DOI: 10.3390/horticulturae501001910.3390/horticulturae5010019Apri DOISearch in Google Scholar

RAMÍREZ-GODINA, F. – ROBLEDO-TORRES, V. – FOROUGHBAKHCH-POURNABAV, R. – BENAVIDES-MENDOZA, A. – HERNÁNDEZ-PIÑERO, J.L. – REYES-VALDES, M.H. – ALVARADO-VÁZQUEZ, M.A. 2013. Yield and fruit quality evaluation in husk tomato autotetraploids (Physalis ixocarpa) and diploids. In Australian Journal of Crop Science, vol. 933, pp. 933 – 940.Search in Google Scholar

SALEEM, M. – LAW, A.D. – SAHIB, M.R. – PERVAIZ, Z.H. – ZHANG, Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. In Rhizosphere, vol. 6, no. 1, pp. 47 – 51. DOI: 10.1016/j.rhisph.2018.02.00310.1016/j.rhisph.2018.02.003Apri DOISearch in Google Scholar

SMITH, R. – JIMENEZ, M.– CANTWELL, M. 1999. Tomatillo production in California. Available at http://anrcatalog.ucanr.edu/pdf/7246.pdf (accessed July 23, 2019)10.3733/ucanr.7246Search in Google Scholar

VALDIVIA-MARES, L.E. – RODRÍGUEZ ZARAGOZA, F.A. – SÁNCHEZ GONZÁLEZ, J.J. – VARGAS-PONCE, O. 2016. Phenology, agronomic and nutritional potential of three wild husk tomato species (Physalis, Solanaceae) from Mexico. In Scientia Horticulturae, vol. 200, pp. 83 – 94. DOI: 10.1016/j.scienta.2016.01.00510.1016/j.scienta.2016.01.005Apri DOISearch in Google Scholar

WALLENSTEIN, M.D. 2017. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. In Rhizosphere, vol. 3, no. 2, pp. 230 – 232. DOI: 10.1016/j.rhisph.2017.04.00410.1016/j.rhisph.2017.04.004Apri DOISearch in Google Scholar

WANG, Q. – GARRITY, G.M. – TIEDJE, J.M. – COLE, J.R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. In Applied and Environmental Microbiology, vol. 73, pp. 5261 – 5267. DOI: 10.1128/AEM.00062-0710.1128/AEM.00062-07195098217586664Apri DOISearch in Google Scholar

WANG, M. – CHEN, L. – LI, Y. – CHEN, L. – LIU, ZH. – WANG, X. – YAN, P. – QIN, S. 2018. Responses of soil microbial communities to a short-term application of seaweed fertilizer revealed by deep amplicon sequencing. In Applied Soil Ecology, vol. 125, pp. 288 – 296. DOI: 10.1016/j.ap-soil.2018.02.01310.1016/j.ap-soil.2018.02.013Apri DOISearch in Google Scholar

XUE, D. – CHRISTENSON, R. – GENGER, R. – GEVENS, A. – LANKAU, R.A. 2018. Soil microbial communities reflect both inherent soil properties and management practices in Wisconsin potato fields. In American Journal of Potato Research, vol. 95, pp. 696. DOI: 10.1007/s12230-018-9677-610.1007/s12230-018-9677-6Apri DOISearch in Google Scholar

ZAMORA-TAVARES, P. – VARGAS-PONCE, O. – SANCHEZ-MARTINEZ, J. – CABRERA-TOLEDO, D. 2015. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. In Genetic Resources and Crop Evolution, vol. 62, pp. 141 – 153. DOI: 10.1007/s10722-014-0163-910.1007/s10722-014-0163-9Apri DOISearch in Google Scholar

ZHAO, Q. – ZENG, D.H. – FAN, Z.-P. 2010. Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil. In Applied Soil Ecology, vol. 46, pp. 341 – 346. DOI: 10.1016/j.apsoil.2010.10.00710.1016/j.apsoil.2010.10.007Apri DOISearch in Google Scholar

ZHENG, M. – GUO, J. – XU, J. – YANG, K. – TANG, R. – GU, X. – LI, H. – CHEN, L. 2019. Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. In Food & Function, vol. 10, no. 6, pp. 3386 – 3395. DOI: 10.1039/c9fo00394k10.1039/C9FO00394KSearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo