[Baranowska I., Kowalski B., 2012, A rapid UHPLC method for the simultaneous determination of drugs from different therapeutic groups in surface water and wastewater, Bull. Environ. Contam. Toxicol. 89(1): 8–14.10.1007/s00128-012-0634-7337410522487965]Search in Google Scholar
[Barra Caracciolo A., Topp E., Grenni P., 2015, Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review, J. Pharm. Biomed. Anal. 106: 25–36.10.1016/j.jpba.2014.11.04025534003]Search in Google Scholar
[BIO Intelligence Service, 2013, Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers. Retrieved from http://ec.europa.eu/health/files/environment/study_environment.pdf [accessed 10 April 2017].]Search in Google Scholar
[Bound J.P., Voulvoulis N., 2005, Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom, Environ. Health Perspect. 113(12): 1705–1711.10.1289/ehp.8315131490916330351]Search in Google Scholar
[Boxall A.B., Rudd M.A., Brooks B.W., Caldwell D.J., Choi K., Hickmann S., Innes E., Ostapyk K., Staveley J.P., Verslycke T., Ankley G.T., Beazley K.F., Belanger S.E., Berninger J.P., Carriquiriborde P., Coors A., Deleo P.C., Dyer S.D., Ericson J.F., Gagné F., Giesy J.P., Gouin T., Hallstrom L., Karlsson M.V., Larsson D.G., Lazorchak J.M., Mastrocco F., McLaughlin A., McMaster M.E., Meyerhoff R.D., Moore R., Parrott J.L., Snape J.R., Murray-Smith R., Servos M.R., Sibley P.K., Straub J.O., Szabo N.D., Topp E., Tetreault G.R., Trudeau V.L., Van Der Kraak G., 2012, Pharmaceuticals and personal care products in the environment: what are the big questions?, Environ. Health Perspect. 120(9): 1221–1229.10.1289/ehp.1104477344011022647657]Search in Google Scholar
[Bringolf R.B., Heltsley R.M., Newton T.J., Eads C.B., Fraley S.J., Shea D., Cope W.G., 2010, Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels, Environ. Toxicol. Chem. 29(6): 1311–1318.10.1002/etc.15720821574]Search in Google Scholar
[Brodin T., Piovano S., Fick J., Klaminder J., Heynen M., Jonsson M., 2014, Ecological effects of pharmaceuticals in aquatic systems – impacts through behavioural alterations, Philos. Trans. R. Soc. Lond. B 369(1656): 20130580.10.1098/rstb.2013.0580421359125405968]Search in Google Scholar
[Brooks B.W., Chambliss C.K., Stanley J.K., Ramirez A., Banks K.E., Johnson R.D., Lewis R.J., 2005, Determination of select antidepressants in fish from an effluent-dominated stream, Environ. Toxicol. Chem. 24(2): 464–469.10.1897/04-081R.1]Apri DOISearch in Google Scholar
[Caban M., Lis E., Kumirska J., Stepnowski P., 2015, Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization, Sci. Total. Environ. 538: 402–411.10.1016/j.scitotenv.2015.08.07626318224]Search in Google Scholar
[Caldwell D.J., Mertens B., Kappler K., Senac T., Journel R., Wilson P., Meyerhoff R.D., Parke N.J., Mastrocco F., Mattson B., Murray-Smith R., Dolan D.G., Straub J.O., Wiedemann M., Hartmann A., Finan D.S., 2016, A risk-based approach to managing active pharmaceutical ingredients in manufacturing effluent, Environ. Toxicol. Chem. 35(4): 813–822.10.1002/etc.316326183919]Apri DOISearch in Google Scholar
[Cardoso O., Porcher J.M., Sanchez W., 2014, Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge, Chemosphere 115: 20–30.10.1016/j.chemosphere.2014.02.00424602347]Search in Google Scholar
[Celiz M.D., Tso J., Aga D.S., 2009, Pharmaceutical metabolites in the environment: analytical challenges and ecological risks, Environ. Toxicol. Chem. 28(12): 2473–2484.10.1897/09-173.119663539]Apri DOISearch in Google Scholar
[Cui C.W., Ji S.L., Ren H.Y., 2006, Determination of steroid estrogens in wastewater treatment plant of a controceptives producing factory, Environ. Monit. Assess. 121(1–3): 409–419.10.1007/s10661-005-9139-816758282]Search in Google Scholar
[Daughton C.G., 2003, Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. II. Drug disposal, waste reduction, and future directions, Environ. Health Perspect. 111(5): 775–785.10.1289/ehp.5948124148812727607]Search in Google Scholar
[Ding J., Lu G., Li S., Nie Y., Liu J., 2015, Biological fate and effects of propranolol in an experimental aquatic food chain, Sci. Total. Environ. 532: 31–39.10.1016/j.scitotenv.2015.06.00226057722]Search in Google Scholar
[Du B., Haddad S.P., Scott W.C., Chambliss C.K., Brooks B.W., 2015, Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought, Chemosphere. 119: 927–934.10.1016/j.chemosphere.2014.08.04425261960]Search in Google Scholar
[[EU] European Union, 2013, Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, Offic. J. Eur. Union L226: 1–17.]Search in Google Scholar
[Fick J., Söderström H., Lindberg R.H., Phan C., Tysklind M., Larsson D.G., 2009, Contamination of surface, ground, and drinking water from pharmaceutical production, Environ. Toxicol. Chem. 28(12): 2522–2527.10.1897/09-073.119449981]Apri DOISearch in Google Scholar
[Giebułtowicz J., Nałęcz-Jawecki G., 2014, Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland), Ecotoxicol. Environ. Saf. 104: 103–109.10.1016/j.ecoenv.2014.02.02024636953]Apri DOISearch in Google Scholar
[Giebułtowicz J., Nałęcz-Jawecki G., 2016, Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland), Chemosphere 148: 137–147.10.1016/j.chemosphere.2015.12.13526803579]Search in Google Scholar
[Giebułtowicz J., Stankiewicz A., Wroczyński P., Nałęcz-Jawecki G., 2016, Occurrence of cardiovascular drugs in the sewage-impacted Vistula River and in tap water in the Warsaw region (Poland), Environ. Sci. Pollut. Res. 23: 24337–24349.10.1007/s11356-016-7668-z27655616]Apri DOISearch in Google Scholar
[Grabicova K., Grabic R., Blaha M., Kumar V., Cerveny D., Fedorova G., Randak T., 2015, Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant, Water Res. 72: 145–153.10.1016/j.watres.2014.09.01825283339]Search in Google Scholar
[Heberer T., 2002, Tracking persistent pharmaceutical residues from municipal sewage to drinking water, J. Hydrol. 266(3–4): 175–189.10.1016/S0022-1694(02)00165-8]Search in Google Scholar
[Huang W.C., Chou Y.P., Kao P.M., Hsu T.K., Su H.C., Ho Y.N., Yang Y.C., Hsu B.M., 2016, Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters, Water Sci. Technol. 73(8): 1832–1841.10.2166/wst.2016.00427120637]Search in Google Scholar
[[IMS] IMS Institute for Healthcare Informatics, 2015, Global Use of Medicines in 2020: Outlook and Implications, 43 pp.]Search in Google Scholar
[Jakimska A., Śliwka-Kaszyńska M., Reszczyńska J., Namieśnik J., Kot-Wasik A., 2014, Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS, Anal. Bioanal. Chem. 406(15): 3667–3680.10.1007/s00216-014-7614-1402663024452745]Search in Google Scholar
[Jeffries K.M., Brander S.M., Britton M.T., Fangue N.A., Connon R.E., 2015, Chronic exposure to low and high concentration of ibuprofen elicit different gene response patterns in a euryhaline fish, Environ. Sci. Pollut. Res. 22(22): 17397–17413.10.1007/s11356-015-4227-y25731088]Search in Google Scholar
[Jelic A., Gros M., Ginebreda A., Cespedes-Sánchez R., Ventura F., Petrovic M., Barcelo D., 2011, Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment, Water Res. 45(3): 1165–1176.10.1016/j.watres.2010.11.01021167546]Apri DOISearch in Google Scholar
[Kalgutkar A.S., Dalvie D.K., O’Donnell J.P., Taylor T.J., Sahakian D.C., 2002, On the diversity of oxidative bioactivation reactions on nitrogen-containing xenobiotics, Curr. Drug Metab. 3(4): 379–424.10.2174/138920002333736012093357]Apri DOISearch in Google Scholar
[Kannan K., Praamsma M.L., Oldi J.F., Kunisue T., Sinha R.K., 2009, Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India, Chemosphere 76(1): 22–26.10.1016/j.chemosphere.2009.02.05419328520]Search in Google Scholar
[Kasprzyk-Hordern B., Dinsdale R.M., Guwy A.J., 2007, Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry, J. Chromatogr. A. 1161(1–2): 132–145.10.1016/j.chroma.2007.05.07417559858]Search in Google Scholar
[Khetan S.K., Collins T.J., 2007, Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry, Chem. Rev. 107(6): 2319–2364.10.1021/cr020441w17530905]Search in Google Scholar
[Koczura R., Krysiak N., Taraszewska A., Mokracka J., 2015, Coliform bacteria isolated from recreational lakes carry class 1 and class 2 integrons and virulence-associated genes, J. Appl. Microbiol. 119(2): 594–603.10.1111/jam.1283825963437]Search in Google Scholar
[Kotowska U., Kapelewska J., Sturgulewska J., 2014, Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification-microextraction followed by GC-MS, Environ. Sci. Pollut. Res. 21(1): 660–673.10.1007/s11356-013-1904-6387742723818073]Apri DOISearch in Google Scholar
[Kot-Wasik A., Jakimska A., Śliwka-Kaszyńska M., 2016, Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants, Environ. Monit. Assess. 188(12): 661.10.1007/s10661-016-5637-027837362]Search in Google Scholar
[Kumirska J., Migowska N., Caban M., Łukaszewicz P., Stepnowski P., 2015, Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples, Sci. Total Environ. 508: 498–505.10.1016/j.scitotenv.2014.12.02025522321]Search in Google Scholar
[Lahti M., Brozinski J.M. Jylhä A. Kronberg L., Oikari A., 2011, Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout, Environ. Toxicol. Chem. 30(6): 1403–1411.10.1002/etc.50121337612]Apri DOISearch in Google Scholar
[Langford K., Thomas K.V., 2011, Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment, J. Environ. Monitor. 13: 416–421.10.1039/C0EM00342E21152649]Apri DOISearch in Google Scholar
[Larsson D.G., de Pedro C., Paxeus N., 2007, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater. 148(3): 751–755.10.1016/j.jhazmat.2007.07.00817706342]Search in Google Scholar
[Li W., Shi Y., Gao L., Liu J., Cai Y., 2012, Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China, Environ. Pollut. 162: 56–62.10.1016/j.envpol.2011.10.02222243847]Search in Google Scholar
[Liu J., Lu G., Wang Y., Yan Z., Yang X., Ding J., Jiang Z., 2014, Bioconcentration, metabolism, and biomarker responses in freshwater fish Carassius auratus exposed to roxithromycin, Chemosphere 99: 102–108.10.1016/j.chemosphere.2013.10.03624210552]Search in Google Scholar
[Łukaszewicz P., Maszkowska J., Mulkiewicz E., Kumirska J., Stepnowski P., Caban M., 2016, Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection, Rev. Environ. Contam. Toxicol. 243: 89–148.10.1007/398_2016_1628005213]Search in Google Scholar
[Martínez-Hernández V., Meffe R., Herrera S., Arranz E., de Bustamante I., 2014, Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment, Sci. Total Environ. 472: 273–281.10.1016/j.scitotenv.2013.11.03624291627]Search in Google Scholar
[Mendoza A., Aceña J., Pérez S., López de Alda M., Barceló D., Gil A., Valcárcel Y., 2015, Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard, Environ. Res. 140: 225–241.10.1016/j.envres.2015.04.003]Search in Google Scholar
[Migowska N., Caban M., Stepnowski P., Kumirska J., 2012, Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography-mass spectrometry and gas chromatography with electron capture detection, Sci. Total Environ. 441: 77–88.10.1016/j.scitotenv.2012.09.043]Search in Google Scholar
[O’Neil J.M., Davis T.W., Burford M.A., Gobler C.J., 2012, The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change, Harmful Algae 14: 313–334.10.1016/j.hal.2011.10.027]Apri DOISearch in Google Scholar
[Obimakinde S., Fatoki O., Opeolu B., Olatunji O., 2017, Veterinary pharmaceuticals in aqueous systems and associated effects: an update, Environ. Sci. Pollut. Res. 24(4): 3274–3297.10.1007/s11356-016-7757-z]Apri DOISearch in Google Scholar
[Pal A., He Y., Jekel M., Reinhard M., Gin K.Y., 2014, Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle, Environ. Int. 71: 46–62.10.1016/j.envint.2014.05.025]Apri DOISearch in Google Scholar
[Puckowski A., Mioduszewska K., Łukaszewicz P., Borecka M., Caban M., Maszkowska J., Stepnowski P., 2016, Bioaccumulation and analytics of pharmaceutical residues in the environment: A review, J. Pharm. Biomed. Anal. 127: 232–255.10.1016/j.jpba.2016.02.049]Search in Google Scholar
[Qingwei B., Xiao S., Gang Y., Jun H., Bin W., 2016, Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs, Emerging Contaminants 2(3): 145–147.10.1016/j.emcon.2016.05.003]Search in Google Scholar
[Qiting J., Xiheng Z., 1988, Combination process of anaerobic digestion and ozonation technology for treating wastewater from antibiotics production, Water Treat. 3: 285–291.]Search in Google Scholar
[Reddersen K., Heberer T., Dünnbier U., 2002, Identification and significance of phenazone drugs and their metabolites in ground-and drinking water, Chemosphere 49(4): 539–544.10.1016/S0045-6535(02)00387-9]Apri DOISearch in Google Scholar
[Rzymski P., Klimaszyk P., Kubacki T., Poniedziałek B., 2013, The effect of glyphosate-based herbicide on aquatic organisms – a case study, Limnol. Rev. 13: 215–220.10.2478/limre-2013-0024]Search in Google Scholar
[Rzymski P., Niedzielski P., Klimaszyk P., Poniedziałek B., 2014, Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ. Monit. Assess. 186(5): 3199–3212.10.1007/s10661-013-3610-8396981224407963]Search in Google Scholar
[Scheytt T., Mersmann P., Lindstädt R., Heberer T., 2005, Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments, Chemosphere. 60(2): 245–253.10.1016/j.chemosphere.2004.12.04215914244]Apri DOISearch in Google Scholar
[Sim W.J., Lee J.W., Lee E.S., Shin S.K., Hwang S.R., Oh J.E., 2011, Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures, Chemosphere 82(2): 179–186.10.1016/j.chemosphere.2010.10.02621040946]Apri DOISearch in Google Scholar
[Słodkowicz-Kowalska A., Majewska A.C., Rzymski P., Skrzypczak Ł., Werner A., 2015, Human waterborne protozoan parasites in freshwater bivalves (Anodonta anatina and Unio tumidus) as potential indicators of fecal pollution in urban reservoir, Limnologica 51: 32–36.10.1016/j.limno.2014.12.001]Search in Google Scholar
[Statista, 2016, Revenue of the worldwide pharmaceutical market from 2001 to 2015 (in billion U.S. dollars). Retrieved from https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/ [accessed 10 April 2017].]Search in Google Scholar
[Sura S., Degenhardt D., Cessna A.J., Larney F.J., Olson A.F., McAllister T.A., 2015, Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff, Sci. Total Environ. 521–522: 191–199.10.1016/j.scitotenv.2015.03.08025839178]Search in Google Scholar
[Svahn O., Björklund E., 2015, Describing sorption of pharmaceuticals to lake and river sediments, and sewage sludge from UNESCO Biosphere Reserve Kristianstads Vattenrike by chromatographic asymmetry factors and recovery measurements, J. Chromatogr. A 1415: 73–82.10.1016/j.chroma.2015.08.06126362805]Search in Google Scholar
[Ternes T.A., Joss A., Siegrist H., 2004, Scrutinizing pharmaceuticals and personal care products in wastewater treatment, Environ. Sci. Technol. 38(20): 392–399.10.1021/es040639t15543724]Apri DOISearch in Google Scholar
[Tixier C., Singer H.P., Oellers S., Müller S.R., 2003, Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters, Environ. Sci. Technol. 37(6): 1061–1068.10.1021/es025834r12680655]Apri DOISearch in Google Scholar
[Wagil M., Białk-Bielińska A., Maszkowska J., Stepnowski P., Kumirska J., 2015a, Critical points in the evaluation of analytical methods based on liquid chromatography separation for the determination of doramectin in different environmental samples, Chemosphere 119 Suppl.: 9–15.10.1016/j.chemosphere.2014.03.13724815899]Search in Google Scholar
[Wagil M., Kumirska J., Stolte S., Puckowski A.,, Maszkowska J., Stepnowski P. Białk-Bielińska A., 2014, Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland, Sci. Total Environ. 493: 1006–1013.10.1016/j.scitotenv.2014.06.08225016107]Search in Google Scholar
[Wagil M., Maszkowska J., Białk-Bielińska A., Caban M., Stepnowski P., Kumirska J., 2015b, Determination of metronidazole residues in water, sediment and fish tissue samples, Chemosphere 119 Suppl.: 28–34.10.1016/j.chemosphere.2013.12.06124412503]Search in Google Scholar
[Wagil M., Maszkowska J., Białk-Bielińska A., Stepnowski P., Kumirska J., 2015c, A comprehensive approach to the determination of two benzimidazoles in environmental samples, Chemosphere 119 Suppl.: 35–41.10.1016/j.chemosphere.2014.04.10624890838]Search in Google Scholar
[WHO/UNICEF, 2015, Progress on sanitation and drinking water: 2015 update and MDG assessment, World Health Organization (WHO), Geneva, 80 pp.]Search in Google Scholar
[Wolska L., Mechlińska A., Rogowska J., Namieśnik J., 2014, Polychlorinated biphenyls (PCBs) in bottom sediments: identification of sources, Chemosphere 111: 151–156.10.1016/j.chemosphere.2014.03.02524997912]Search in Google Scholar
[Yamamoto H., Nakamura Y., Moriguchi S., Nakamura Y., Honda Y., Tamura I., Hirata Y., Hayashi A., Sekizawa J., 2009, Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments, Water Res. 43(2): 351–362.10.1016/j.watres.2008.10.03919041113]Apri DOISearch in Google Scholar
[Yan C., Che F., Zeng L., Wang Z., Du M., Wei Q., Wang Z., Wang D., Zhen Z., 2016, Spatial and seasonal changes of arsenic species in Lake Taihu in relation to eutrophication, Sci. Total Environ. 563–564: 496–505.10.1016/j.scitotenv.2016.04.13227152991]Search in Google Scholar
[Zhang X.X., Zhang T., Fang H.H., 2009, Antibiotic resistance genes in water environment, Appl. Microbiol. Biotechnol. 82(3): 397–414.10.1007/s00253-008-1829-z19130050]Apri DOISearch in Google Scholar
[Zou H., Radke M., Kierkegaard A., MacLeod M., McLachlan M.S., 2015, Using chemical benchmarking to determine the persistence of chemicals in a Swedish lake, Environ. Sci. Technol. 49(3): 1646–1653.10.1021/es505548k25565241]Search in Google Scholar