[1. Jones JD, Dangl JL. The plant immune system. Nature 2006; 444(7117):323-9.10.1038/nature0528617108957]Search in Google Scholar
[2. Nawrot R, Kalinowski A, Gozdzicka-Jozefiak A. Proteomic analysis of Chelidonium majus milky sap using two-dimensional gel electrophoresis and tandem mass spectrometry. Phytochemistry 2007; 68(12):1612-1622.10.1016/j.phytochem.2007.03.03917512564]Search in Google Scholar
[3. Nawrot R, Tomaszewski Ł, Czerwoniec A, Goždzicka-Józefiak A. Identification of a Coding Sequence and Structure Modeling of a Glycine-Rich RNA-Binding Protein (CmGRP1) from Chelidonium majus L. Plant Mol Biol Rep 2013; 31:470-476.10.1007/s11105-012-0510-y388157324415842]Search in Google Scholar
[4. Woloshen V, Huang S, Li X. RNA-binding Proteins in Plant Immunity. J Pathogens 2011; 2011:e278697.10.4061/2011/278697333564322567326]Search in Google Scholar
[5. Huh SU, Paek KH. Plant RNA binding proteins for control of RNA virus infection. Front Physiol 2013; 4:397.]Search in Google Scholar
[6. Monaghan J, Xu F, Xu S, Zhang, Li X. Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex. Plant Physiol 2010; 154(4):1783-1793.10.1104/pp.110.158931299600720943852]Search in Google Scholar
[7. Germain H, Na Q, Cheng Y. T. [MOS11: a new component in the mRNA export pathway. PLoS Genetics 2010; 6(12):e1001250.10.1371/journal.pgen.1001250300965721203492]Search in Google Scholar
[8. Deleris A, Gallago-Bartolome J, Bao J, Kasschau K. D, Carrington J. C, Voinnet O. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 2006; 313(5783):68-71.10.1126/science.112821416741077]Search in Google Scholar
[9. Zhang Y, Cheng Y. T, Bi D, Palma K, Li X. MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana. Curr Biol 2005; 15(21):1936-1942.10.1016/j.cub.2005.09.03816271871]Search in Google Scholar
[10. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582(14):1977-1986.10.1016/j.febslet.2008.03.004285886218342629]Search in Google Scholar
[11. Staiger D. RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2001; 356(1415):1755-1759.10.1098/rstb.2001.0964108855111710982]Search in Google Scholar
[12. Lorkovic ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 2009; 14(4):229-236.10.1016/j.tplants.2009.01.007]Search in Google Scholar
[13. Qi Y, Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano JR, Cohen JD, Katagiri F. A putative RNAbinding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 2010; 23(12):1573-1583.10.1094/MPMI-05-10-0106]Search in Google Scholar
[14. Kadan G, Gozler T, Shamma M. Turkiyenine, a new alkaloid from Chelidonium majus. J Nat Prod 1990; 53(2):531-532.10.1021/np50068a046]Search in Google Scholar
[15. Pavao M.L, Pinto R.E. Densitometric assays for the evaluation of water soluble alkaloids from Chelidonium majus L. (Papaveraceae) roots in the Azores, along one year cycle. Arquipelago, Ser Ciencias Biol Marinhas 1995; 13: 89-91.]Search in Google Scholar
[16. Colombo M.L, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol Res 1996; 33(2):127-134.]Search in Google Scholar
[17. Paris R.R, Moyse H. Precis de matiere medicale. Vol. II. Paris. Masson Ed, 1967:207-208.]Search in Google Scholar
[18. Duke J. Handbook of Medicinal Herbs. CRC Press 1985.]Search in Google Scholar
[19. Bezanger-Beauquesne L, Pinkas M, Torck M, Trotin F. Plantes medicinales des regions temperees. 2nd ed. Paris. Ed Maloine, 1990.]Search in Google Scholar
[20. Benninger J, Schneider H. T, Schuppan D, Kirchner T, Hahn E. G. Acute hepatitis induced by greater celandine (Chelidonium majus). Gastroenterology 1999; 117:1234-1237.10.1016/S0016-5085(99)70410-5]Search in Google Scholar
[21. Chung, H. S, An H. J, Jeong H. J, Won J. H, Hong S. H, Kim H. M. Water extract isolated from Chelidonium majus enhances nitric oxide and tumour necrosis factor-fż production via nuclear factor-fèB activation in mouse peritoneal macrophages. J. Pharm. Pharmacol 2004; 56:129-134.]Search in Google Scholar
[22. Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T. Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 2002; 82(1):51-53.10.1016/S0378-8741(02)00143-5]Search in Google Scholar
[23. Hiller K. O, Ghorbani M, Schilcher H. Antispasmodic and relaxant activity of chelidonine, protopine, coptisine, and Chelidonium majus extracts on isolated guinea-pig ileum. Planta Med 1998; 64:758-760.10.1055/s-2006-957576]Search in Google Scholar
[24. Tome F, Colombo M. L. Alkaloids from Chelidonium majus: distribution in the plant and factors affecting their accumulation. Phytochemistry 1995; 40:3-39.10.1016/0031-9422(95)00055-C]Search in Google Scholar
[25. Pattanayak D, Solanke AU, Kumar PA. Plant RNA Interference Pathways: Diversity in Function, Similarity in Action. Plant Mol Biol Rep 2013; 31(3):493-506.10.1007/s11105-012-0520-9]Search in Google Scholar
[26. Mandadi K. K, Scholthof KB. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 2013; 25(5):1489-505.]Search in Google Scholar
[27. Ellendorff U, Fradin EF, De Jonge R, Thomma BPHJ. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 2009; 60(2):591-602.10.1093/jxb/ern306265145119098131]Search in Google Scholar
[28. Zhang X, Zhao H, Gao S. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol Cell 2011; 42(3):356-366.10.1016/j.molcel.2011.04.010310126221549312]Search in Google Scholar
[29. Burd CG, Dreyfuss G. Conserved structures and diversity of functions RNA-binding proteins. Science 1994; 265:615-621.10.1126/science.8036511]Search in Google Scholar
[30. Dreyfuss G, Kim V.N, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002; 3:195-205.10.1038/nrm760]Search in Google Scholar
[31. Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8(6):479-490.10.1038/nrm2178]Search in Google Scholar
[32. Lorkovic ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNAbinding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 2002; 30(3):623-635.10.1093/nar/30.3.623]Search in Google Scholar
[33. Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H. Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ 2010; 33(5):759-768.]Search in Google Scholar
[34. Owttrim GW. RNA helicases and abiotic stress. Nucleic Acids Res 2006; 34(11):3220-3230.10.1093/nar/gkl408]Search in Google Scholar
[35. Tam PP, Barrette-Ng I.H, Simon D.M, Tam MW, Ang AL, Muench DG. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization]. BMC Plant Biol 2010; 10:44.10.1186/1471-2229-10-44]Search in Google Scholar
[36. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith S. K, Martienssen RA, Hannon GJ, Joshua-Tor L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 2003; 10(12):1026-1032.10.1038/nsb1016]Search in Google Scholar
[37. Alba M, Pages M. Plant proteins containing the RNA-recognition motif. Trends Plant Sci 1998; 3(1):15-21.10.1016/S1360-1385(97)01151-5]Search in Google Scholar
[38. Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272(9):2118-2131.10.1111/j.1742-4658.2005.04653.x15853797]Search in Google Scholar
[39. Cook K.B, Kazan H, Zuberi K, Morris Q, Hughes T.R. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 2010.10.1093/nar/gkq1069301367521036867]Search in Google Scholar
[40. Vermel M, Guermann B, Delage L, Grienenberger J.M, Marechal-Drouard L, Gualberto JM. A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci USA 2002; 99(9):5866-5871.10.1073/pnas.092019599]Search in Google Scholar
[41. Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. New Phytol 2013; 197(2):394-404.10.1111/nph.12022]Search in Google Scholar
[42. Mousavi A, Hotta Y. Glycine-rich proteins: a class of novel proteins. Appl Biochem Biotechnol 2005; 120(3):169-174.10.1385/ABAB:120:3:169]Search in Google Scholar
[43. Sachetto-Martins G, Franco L, de Oliveira D. Plant glycine-rich proteins: a family or just proteins with a common motif. Biochem Biophys Acta 2000; 1492(1):1-14.10.1016/S0167-4781(00)00064-6]Search in Google Scholar
[44. Park C. J, Park C. B, Hong SS, Lee HS, Lee S. Y, Kim S. C. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd's purse, Capsella bursapastoris. Plant Mol Biol 2000; 44(2):187-197.10.1023/A:1006431320677]Search in Google Scholar
[45. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A. Plant Antimicrobial peptides. Folia Microbiol 2014; 59:181-196.10.1007/s12223-013-0280-4]Search in Google Scholar
[46. Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto-Martins G. Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet Mol Biol 2005; 28(3):608-624.10.1590/S1415-47572005000400016]Search in Google Scholar
[47. Nawrot R, Musidlak O. Unpublished results, oral communication.]Search in Google Scholar
[48. Ambrosone A, Costa A, Leone A, Grillo S. Beyond transcription: RNA binding-proteins as emerging regulators of plant response to environmental constraints. Plant Sci 2012; 182:12-18.10.1016/j.plantsci.2011.02.00422118611]Search in Google Scholar
[49. Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 2009; 14(8):443-453.10.1016/j.tplants.2009.05.00419616989]Search in Google Scholar
[50. Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 2005; 579(5):1167-1171.10.1016/j.febslet.2004.12.08615710407]Search in Google Scholar
[51. Duprat A, Caranta C, Revers F, Menand B, Browning K. S, Robaglia C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 2002; (32)6:927-934.10.1046/j.1365-313X.2002.01481.x]Search in Google Scholar
[52. Fedoroff NV. RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 2002; 5(5):452- 459.]Search in Google Scholar
[53. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431(7006):343- 349.10.1038/nature02873]Search in Google Scholar
[54. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 2006; 20(7):759-771.10.1101/gad.1410506]Search in Google Scholar
[55. Schauer S.E, Jacobsen SE, Meinke DW, Ray A. Dicer-Like1: blind men and elephants in Arabidopsis development. Trends Plant Sci 2002; 7(11):487-491.10.1016/S1360-1385(02)02355-5]Search in Google Scholar
[56. Xie Z, Allen E, Wilken A, Carrington JC. DICERLIKE4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 2005; 102(36):12984-12989.10.1073/pnas.0506426102120031516129836]Search in Google Scholar
[57. Palma K, Zhao Q, Yu TC. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev 2007; 21(12):1484-1493.10.1101/gad.1559607189142617575050]Search in Google Scholar
[58. Monaghan J, Xu F, Gao M. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 2009; 5(7):e1000526.10.1371/journal.ppat.1000526270944319629177]Search in Google Scholar
[59. Li X, Clarke JD, Zhang Y, Dong X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact 2001; 14(10):1131-1139.10.1094/MPMI.2001.14.10.113111605952]Search in Google Scholar
[60. Qi Y, Tsuda K, Joe A, Sato M, Nguyen Le V, Glazebrook J. A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 2010; 23(12):1573-1583.10.1094/MPMI-05-10-010620636102]Search in Google Scholar
[61. Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY. Different roles of glycine-rich RNA-binding protein 7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and Tobacco mosaic viruses. Plant Physiol Biochem 2012; 60:46-52.10.1016/j.plaphy.2012.07.02022902796]Search in Google Scholar
[62. Streitner C, Hennig L, Korneli C, Staiger D. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biol 2010; 10:221.10.1186/1471-2229-10-221301783120946635]Search in Google Scholar
[63. Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 2004; 37(2):186-198.10.1046/j.1365-313X.2003.01951.x]Search in Google Scholar
[64. Srivastava S, Fristensky B, Kav NN. Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions]. Plant Cell Physiol 2004; 45(9):1320-1324.10.1093/pcp/pch13715509856]Search in Google Scholar
[65. Chen ZY, Brown RL, Damann KE, Cleveland TE. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. Mol Plant Pathol 2010; 11(1):69-81.10.1111/j.1364-3703.2009.00574.x664048420078777]Search in Google Scholar
[66. Wharton RP, Aggarwal AK. mRNA regulation by Puf domain proteins. Sci STKE 2006; 2006(354):pe37.10.1126/stke.3542006pe3717003467]Search in Google Scholar
[67. Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2011; 2(4):471-492.10.1002/wrna.6921957038]Search in Google Scholar
[68. Huh SU, Kim MJ, Paek KH. Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci USA 2013; 110(2):779-784.10.1073/pnas.1214287110354582123269841]Search in Google Scholar