1. bookVolume 28 (2015): Edizione 3 (September 2015)
Dettagli della rivista
Prima pubblicazione
30 May 2014
Frequenza di pubblicazione
4 volte all'anno
access type Accesso libero

The significance of the adenosinergic system in morphine dependence

Pubblicato online: 26 Nov 2015
Volume & Edizione: Volume 28 (2015) - Edizione 3 (September 2015)
Pagine: 164 - 169
Ricevuto: 29 Jul 2015
Accettato: 19 Aug 2015
Dettagli della rivista
Prima pubblicazione
30 May 2014
Frequenza di pubblicazione
4 volte all'anno

Addiction is a chronic and recurrent disease. In its pathology, neuroadaptive changes within the dopaminergic pathways inside the mesolimbic system play a predominant role. Of note, the manner in which various neurotransmitters act on their receptors, may modulate the addictive process. Adenosine, an important neuromodulator in the central nervous system, is able to modify the opioid dependence, doing so mainly by its activity on the adenosine A1 and A2A receptors. In the present manuscript, the actual state of knowledge on the relationships between adenosinergic receptors and opioid dependence has been described. Various literature data on the involvement of adenosine ligands, mainly in the signs of morphine withdrawal, as well as morphine-induced sensitization, were also collected. Additionally, in this paper, some important interactions between adenosine and other neurotransmitters (e.g. dopamine, glutamate) are described. It is put forward that these connections are the major mechanism of involvement of the adenosinergic system in morphine addiction. The repeatedly confirmed effectiveness of adenosine ligands in morphine dependence, as seen in various experimental protocols, suggests that adenosine ligands may be useful tools for developing new strategies for attenuating morphine dependence.


1. Ahlijanian M.K., Takemori A.E.: Changes in adenosine receptor sensitivity in morphine-tolerant and - dependent mice. J. Pharmacol. Exp. Ther., 236, 615-620, 1986.Search in Google Scholar

2. Ahlijanian M.K., Takemori A.E.: Ef fects of /-/-N6-(Rphenylisopropyl)- adenosine (R-PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur. J. Pharmacol., 112, 171-179, 1985.10.1016/0014-2999(85)90493-5Search in Google Scholar

3. Ahlijanian M.K., Takemori A.E.: The effect of chronic administration of caffeine on morphine-induced analgesia, tolerance and dependence in mice. Eur. J. Pharmacol., 120, 25-32, 1986.10.1016/0014-2999(86)90635-7Search in Google Scholar

4. Al-Hasani R., Bruchas M.R.: Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior. Anesthesiology, 115(6), 1363-1381, 2011.10.1097/ALN.0b013e318238bba6Search in Google Scholar

5. Allgaier C., Hertting G., Kugelgen O.V.: The adenosine receptormediated inhibition of noradrenaline release possibly involves an N-protein and is increased by alpha 2-autoreceptor blockade. Br. J. Pharmacol., 90(2), 403-412, 1987.10.1111/j.1476-5381.1987.tb08970.xSearch in Google Scholar

6. Barth A. et al.: Neurotoxicity in organotypic hippocampal slices mediated by adenosine analogues and nitric oxide. Brain Res., 762, 79-88, 1997.10.1016/S0006-8993(97)00348-XSearch in Google Scholar

7. Belardinelli L., Linden J., Berne R.M.: The cardiac effects of adenosine. Prog. Cardiovasc. Dis., 32, 73-97, 1989.10.1016/0033-0620(89)90015-7Search in Google Scholar

8. Brailowsky S. et al.: Morphine-theophylline interaction: antagonism or facilitation? Br. J. Pharmacol., 73, 887-92, 1981.10.1111/j.1476-5381.1981.tb08742.xSearch in Google Scholar

9. Brundege J.M., Williams J.T.: Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment. J. Neurophysiol., 87, 1369-1375, 2002.10.1152/jn.00508.2001Search in Google Scholar

10. Capasso A.: Adenosine receptors are involved in the control of acute naloxone-precipitated withdrawal: in vitro evidence. Life Sci., 66, 873-883, 2000.10.1016/S0024-3205(99)00671-2Search in Google Scholar

11. Carr G.D., Fibiger H.C., Phillips A.G. (1989). Conditioned place preference as a measure of drug reward. In: The neuropharmacological basis of reward. Lieberman J.M., Cooper S.J.(editors). Oxford: Oxford University Press; p. 264-319.Search in Google Scholar

12. Chen J., Van Praag H.M., Gardner E.L.: Activation of 5-HT, receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res., 543, 354-357, 1991.10.1016/0006-8993(91)90050-6Search in Google Scholar

13. Ciruela F. et al.: Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci., 26, 2080-2087, 2006.10.1523/JNEUROSCI.3574-05.2006Search in Google Scholar

14. Collier H.O.J., Francis D.L.: Morphine abstinence is associated with increased brain cyclic AMP. Nature, 255, 159-162, 1975.10.1038/255159b0Search in Google Scholar

15. Coradetti R. et al.: Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur. J. Pharmacol., 104, 19-26, 1984.10.1016/0014-2999(84)90364-9Search in Google Scholar

16. de Mendonca A., Sebastiao A.M., Ribeiro J.A.: Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport, 6, 1097-1100, 1995.10.1097/00001756-199505300-00006Search in Google Scholar

17. De Montis M.G. et al.: Decreased adenosine A2 receptor function in morphine dependent rats. Pharmacol. Res., 25, 232-233, 1992.10.1016/1043-6618(92)90378-OSearch in Google Scholar

18. Dhalla A.K. et al.: Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr. Top. Med. Chem., 3, 369-385, 2003.10.2174/1568026033392246Search in Google Scholar

19. DiChiara G., Imperato A.: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA., 85, 5274-5278, 1988.10.1073/pnas.85.14.5274Search in Google Scholar

20. DiChiara G., Imperato A.: Opposite effects of mu and kappa opiate agonist on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharm. Exp. Ther., 244, 1067-1080, 1988.Search in Google Scholar

21. Dixon D.A. et al.: Indirect modulation of dopamine D2 receptors as potential pharmacotherapy for schizophrenia: I. Adenosine agonists. Ann. Pharmacother., 33(4), 480-488, 1999.10.1345/aph.18215Search in Google Scholar

22. Dubey R.K. et al.: Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: Role of A2B receptors. Circulation, 96, 2656-2666, 1997.10.1161/01.CIR.96.8.2656Search in Google Scholar

23. Ferre S. et al.: Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonists binding sites. Neurosci. Lett., 208, 109-112, 1996.10.1016/0304-3940(96)12577-5Search in Google Scholar

24. Ferre S.: Adenosine - dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology, 133, 107-120, 1997.10.1007/s002130050380Search in Google Scholar

25. Ferre S. et al.: Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA., 88, 7238-7241, 1991.10.1073/pnas.88.16.7238Search in Google Scholar

26. Ferre S., Rubio A., Fuxe K.: Stimulation of adenosine A2 receptors induces catalepsy. Neurosci. Lett., 130, 162-164, 1991.10.1016/0304-3940(91)90387-9Search in Google Scholar

27. Fink J.S. et al.: Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain. Res. Mol. Brain Res., 14, 186-195, 1992.10.1016/0169-328X(92)90173-9Search in Google Scholar

28. Fishman P. et al.: Adenosine acts as a chemoprotective agent by stimulating G-CSF production: a role for A1 and A3 adenosine receptors. J. Cell Physiol., 183, 393-398, 2000.10.1002/(SICI)1097-4652(200006)183:3<393::AID-JCP12>3.0.CO;2-GSearch in Google Scholar

29. Fishman P. et al.: The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res., 269, 230-236, 2001.10.1006/excr.2001.5327Search in Google Scholar

30. Fishman P., Bar-Yehuda S.: Pharmacology and therapeutic applications of A3 receptor subtype. Curr. Top. Med. Chem., 3, 463-469, 2003.10.2174/1568026033392147Search in Google Scholar

31. Fredholm B.B. et al.: International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev., 53, 527-552, 2001.Search in Google Scholar

32. Ho E.L. et al.: Effect of cyclic nucleotides and phosphodiesterase inhibition on morphine tolerance and physical dependence. Life Sci., 16, 1895-1900, 1975.10.1016/0024-3205(75)90298-2Search in Google Scholar

33. Jarvis M.F., Williams M.: Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2 selective agonists, [3H]-CGS 21680. Eur. J. Pharmacol., 168, 243-246, 1989.10.1016/0014-2999(89)90571-2Search in Google Scholar

34. Jin C. et al.: Withdrawal-induced c-Fos expression in the rat centromedial amygdala 24 h following a single morphine exposure. Psychopharmacology, 175, 428-435, 2004.Search in Google Scholar

35. Kaplan G.B., Leite-Morris K.A., Sears M.T.: Alterations in adenosine A1 receptors in morphine dependence. Brain Res., 657, 347-350, 1994.10.1016/0006-8993(94)90990-3Search in Google Scholar

36. Kaplan G.B., Leite-Morris K.A.: Up-regulation of adenosine transporter-binding sites in striatum and hypothalamus of opiate tolerant mice. Brain Res., 763, 215-220, 1997.10.1016/S0006-8993(97)00413-7Search in Google Scholar

37. Kitakaze M., Hori M.: Adenosine therapy: a new approach to chronic heart failure. Expert Opin. Investig. Drugs., 9, 2519-2535, 2000.10.1517/13543784.9.11.2519Search in Google Scholar

38. Koob G.F., Volkow N.D.: Neurocircuitry of addiction. Neuropsychopharmacology, 35, 217-238, 2010.10.1038/npp.2009.110Search in Google Scholar

39. Ledent C. et al.: Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature, 388, 674-678, 1997.10.1038/41771Search in Google Scholar

40. Li H., Henry J.L.: Adenosine receptor blockade reveals N-methyl- D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro. Neuroscience, 100, 21-31, 2000.10.1016/S0306-4522(00)00249-9Search in Google Scholar

41. Linden J.: Molecular approach to adenosine receptors: receptormediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol., 41, 775-787, 2001.10.1146/annurev.pharmtox.41.1.775Search in Google Scholar

42. Listos J., Poleszak E., Malec D.: The influence of adenosine receptor agonists and antagonists on morphine place preference in rats. Annales UMCS, Pharmacia, sectio DDD, 15(1), 185-200, 2002.Search in Google Scholar

43. Listos J., Talarek S., Fidecka S.: Involvement of adenosine receptor agonists on the development of hypersensitivity to acute dose of morphine during morphine withdrawal period. Pharmacol Rep. 60(5), 679-685, 2008.Search in Google Scholar

44. Lopes L.V. et al.: Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience, 112, 319-329, 2002.10.1016/S0306-4522(02)00080-5Search in Google Scholar

45. Maldonado R.: The neurobiology of addiction. J. Neural. Transm., 66, 1-14, 2003.10.1007/978-3-7091-0541-2_114582800Search in Google Scholar

46. Malec D., Poleszak E.: Cataleptogenic activity of adenosine analogues in rats. Annales UMCS section DDD, 11, 51-63, 1998.Search in Google Scholar

47. Malec D.: Purinergic receptors. Pol. J. Pharmacol., 48, 457-465, 1996.Search in Google Scholar

48. Marchi M. et al.: Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br. J. Pharmacol., 136, 434-440, 2002.10.1038/sj.bjp.0704712157335712023946Search in Google Scholar

49. Matsuda K.: Experimental studies on the effective procedure to inhibit the development of tolerance to and dependence on morphine. Arzneimittelforschung, 20, 1596-1604, 1970.Search in Google Scholar

50. Mayfield R.D, Suzuki F., Zahniser N.R.: Adenosine A2A receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J. Neurochem., 60, 2334-2337, 1993.10.1111/j.1471-4159.1993.tb03526.x8492136Search in Google Scholar

51. Michalska E., Malec D.: Agonists and antagonists of adenosine receptors and morphine withdrawal syndrome in rats. Pol. J. Pharmacol., 45, 1-9, 1993.Search in Google Scholar

52. Miura T. et al.: Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation. J. Am. Coll. Cardiol., 35, 238-245, 2000.10.1016/S0735-1097(99)00493-3Search in Google Scholar

53. Munro R. et al.: Differential expression of adenosine A2A and A2B receptor subtypes on myeloid U937 and THP-1 cells: Adenosine A2B receptor activation selectively stimulates cAMP formation and inhibition of TNF-α release in THP-1 cells. Drug Dev. Res., 44, 41-47, 1998.10.1002/(SICI)1098-2299(199805)44:1<41::AID-DDR6>3.0.CO;2-PSearch in Google Scholar

54. Noda Y., Nabeshima T.: Opiate physical dependence and N-methyl- D-aspartate receptors. Eur. J. Pharmacol., 500, 121-128, 2004.10.1016/j.ejphar.2004.07.017Search in Google Scholar

55. O’Neill C. et al.: Adenosine A1 receptor mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur. J. Neurosci., 26, 3421-3428, 2007.10.1111/j.1460-9568.2007.05953.xSearch in Google Scholar

56. Peyot M.L. et al.: Extracellular adenosine induces apoptosis of human arterial smooth muscle cells via A2B-purinoreceptor. Circ. Res., 86, 76-85, 2000.10.1161/01.RES.86.1.76Search in Google Scholar

57. Rebola N. et al.: Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron, 57, 121-134, 2008.10.1016/j.neuron.2007.11.023Search in Google Scholar

58. Ribeiro J.A., Sebastiao A.M., de Mendonca A.: Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol., 68, 377-392, 2002. 10.1016/S0301-0082(02)00155-7Search in Google Scholar

59. Robinson T.E, Berridge K.C.: Incentive-sensitization and addiction. Addiction, 96, 103-114, 2001.10.1046/j.1360-0443.2001.9611038.xSearch in Google Scholar

60. Robinson T.E., Berridge K.C.: The incentive sensitization theory of addiction: some current issues. Phil. Trans. R. Soc. B., 363, 3137-3146, 2008.10.1098/rstb.2008.0093Search in Google Scholar

61. Sawynok J.: Topical and peripherially acting analgesics. Pharmacol. Rev., 55, 1-20, 2003.10.1124/pr.55.1.1Search in Google Scholar

62. Schiffmann S.N., Jacobs O., Vanderhaeghen J.J.: Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J. Neurochem., 57, 1062-1067, 1991.10.1111/j.1471-4159.1991.tb08257.xSearch in Google Scholar

63. Sebastiao A.M., Ribeiro J.A.: Adenosine receptors and the central nervous system. Handb. Exp. Pharmacol., 193, 471-534, 2009.10.1007/978-3-540-89615-9_16Search in Google Scholar

64. Shahidi S., Hashemi-Firouzi N.: The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice. Neurosci. Lett., 578, 27-32, 2014.10.1016/j.neulet.2014.06.027Search in Google Scholar

65. Shindou T. et al.: Adenosine A2A receptor enhances GABA (A)-mediated IPSCs in the rat globus pallidus. J. Physiol., 532, 423-434, 2001.10.1111/j.1469-7793.2001.0423f.xSearch in Google Scholar

66. Song Y. et al.: Selective attenuation of isoproterenol-stimulated arrhythmic activity by a partial agonist of adenosine A1 receptor. Circulation, 105, 118-123, 2002.10.1161/hc0102.101392Search in Google Scholar

67. Spanagel R., Weiss F.: The dopamine hypothesis of reward: past and current status. Trends Neurosci., 22, 521-527, 1999.10.1016/S0166-2236(99)01447-2Search in Google Scholar

68. Trescot A.M. et al.: Opioid Pharmacology. Pain Physician., 11, 133-153, 2008.10.36076/ppj.2008/11/S133Search in Google Scholar

69. Van Schaick E.A. et al.: Metabolic and cardiovascular effects of the adenosine A1 receptor agonist N6-(p-Sulfophenyl) adenosine in diabetic zucker rats: Influence of the disease on the selectively of action. J. Pharmacol. Exp. Ther., 287, 21-30, 1998.Search in Google Scholar

70. Vanderschuren L.J., Kalivas P.W.: Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology, 151(2-3), 99-120, 2000.10.1007/s00213000049310972458Search in Google Scholar

71. Wardas J., Konieczny J., Lorenc-Koci E.: SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse, 41(2), 160-171, 2001.10.1002/syn.107011400182Search in Google Scholar

72. Wilcox C.S. et al.: Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J. Am. Soc. Nephrol., 10, 714-720, 1999.10.1681/ASN.V10471410203354Search in Google Scholar

73. Wolf M.E.: LTP may trigger addiction. Mol. Interv., 3, 248-252, 2003.10.1124/mi.3.5.248Search in Google Scholar

74. Wood P.L. et al.: Inhibition of nigrostriatal release of dopamine in the rat by adenosine receptor agonists: A1 receptor mediation. Neuropharmacology, 28, 21-25, 1989. 10.1016/0028-3908(89)90062-2Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo