Journal & Issues

AHEAD OF PRINT

Volume 24 (2022): Issue 4 (December 2022)

Volume 24 (2022): Issue 3 (September 2022)

Volume 24 (2022): Issue 2 (June 2022)

Volume 24 (2022): Issue 1 (March 2022)

Volume 23 (2021): Issue 4 (December 2021)

Volume 23 (2021): Issue 3 (September 2021)

Volume 23 (2021): Issue 2 (June 2021)

Volume 23 (2021): Issue 1 (March 2021)

Volume 22 (2020): Issue 4 (December 2020)

Volume 22 (2020): Issue 3 (September 2020)

Volume 22 (2020): Issue 2 (June 2020)

Volume 22 (2020): Issue 1 (March 2020)

Volume 21 (2019): Issue 4 (December 2019)

Volume 21 (2019): Issue 3 (September 2019)

Volume 21 (2019): Issue 2 (June 2019)

Volume 21 (2019): Issue 1 (March 2019)

Volume 20 (2018): Issue 4 (December 2018)

Volume 20 (2018): Issue 3 (September 2018)

Volume 20 (2018): Issue 2 (June 2018)

Volume 20 (2018): Issue 1 (March 2018)

Volume 19 (2017): Issue 4 (December 2017)

Volume 19 (2017): Issue 3 (September 2017)

Volume 19 (2017): Issue 2 (June 2017)

Volume 19 (2017): Issue 1 (March 2017)

Volume 18 (2016): Issue 4 (December 2016)

Volume 18 (2016): Issue 3 (September 2016)

Volume 18 (2016): Issue 2 (June 2016)

Volume 18 (2016): Issue 1 (March 2016)

Volume 17 (2015): Issue 4 (December 2015)

Volume 17 (2015): Issue 3 (September 2015)

Volume 17 (2015): Issue 2 (June 2015)

Volume 17 (2015): Issue 1 (March 2015)

Volume 16 (2014): Issue 4 (December 2014)

Volume 16 (2014): Issue 3 (September 2014)

Volume 16 (2014): Issue 2 (June 2014)

Volume 16 (2014): Issue 1 (March 2014)

Volume 15 (2013): Issue 4 (December 2013)

Volume 15 (2013): Issue 3 (September 2013)

Volume 15 (2013): Issue 1 (March 2013)

Volume 14 (2012): Issue 4 (December 2012)

Volume 14 (2012): Issue 3 (October 2012)

Volume 14 (2012): Issue 2 (June 2012)

Volume 14 (2012): Issue 1 (March 2012)

Volume 13 (2011): Issue 4 (December 2011)

Volume 13 (2011): Issue 3 (September 2011)

Volume 13 (2011): Issue 2 (June 2011)

Volume 13 (2011): Issue 1 (March 2011)

Volume 12 (2010): Issue 4 (December 2010)

Volume 12 (2010): Issue 3 (September 2010)

Volume 12 (2010): Issue 2 (June 2010)

Volume 12 (2010): Issue 1 (March 2010)

Volume 11 (2009): Issue 4 (December 2009)

Volume 11 (2009): Issue 3 (September 2009)

Volume 11 (2009): Issue 2 (June 2009)

Volume 11 (2009): Issue 1 (March 2009)

Volume 10 (2008): Issue 4 (December 2008)

Volume 10 (2008): Issue 3 (September 2008)

Volume 10 (2008): Issue 2 (June 2008)

Volume 10 (2008): Issue 1 (March 2008)

Volume 9 (2007): Issue 4 (December 2007)

Volume 9 (2007): Issue 3 (September 2007)

Volume 9 (2007): Issue 2 (June 2007)

Volume 9 (2007): Issue 1 (March 2007)

Journal Details
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Search

Volume 23 (2021): Issue 3 (September 2021)

Journal Details
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Search

8 Articles
Open Access

Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system

Published Online: 14 Oct 2021
Page range: 1 - 9

Abstract

Abstract

Eco-friendly synthesis of ethyl 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate (4) ligand (L) using microwave irradiation technique was described. The structure of thioxoimidazolidine derivative ligand compound has been established based on different types of analyses such as infrared, 1H-NMR, 13C-NMR, and mass spectra as well as elemental analysis. The copper, cobalt, and nickel(II) complexes with molecular formula [M(L)(H2O)4]Cl2 (where M = Co(II), Ni(II), and Cu(II), L = thioxoimidazolidine derivative ligand), have been prepared and well-characterized using microanalytical, conductivity measurements, magnetic, spectroscopic, and physical analyses. Upon the outcome results of analyses, the stoichiometry of the synthesized complexes is 1:1 (M:L). The molar conductance values concluded that the behavior of metal complexes was electrolytes. The 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate chelate acts as a monovalent bidentate fashion via nitrogen and oxygen atoms of both thioxoimidazolidine and propanoate ester moieties. The geometric structures of the synthesized metal complexes are an octahedral configuration based on spectroscopic and magnetic moment studies. The thermogravimetric assignments deduced that the presence of four coordinated water molecules. The synthesized copper(II), cobalt(II), and nickel(II) complexes were biologically checked against G+ and G- bacteria and two species of fungi (Aspergillus Nigaer, and Penicillium Sp.).

Keywords

  • Imidazolidine
  • Microwave irradiation
  • Coordination
  • Biological activity
Open Access

Kinetic Study on the Preparation of Aluminum Fluoride Based on Fluosilicic Acid

Published Online: 14 Oct 2021
Page range: 10 - 16

Abstract

Abstract

Reasonable mathematical derivation and mechanism model in the process of producing aluminum fluoride by fluosilicic acid is the key to the industrial treatment of fluorine resources in the tail gas of phosphate ore. In this work, aluminum fluoride was generated directly by fluosilicic acid to extract fluorine from the tail gas of phosphate rock. The uncreated-core model dominated by interfacial reaction and the uncreated-core model dominated by internal diffusion-reaction were then respectively utilized to describe the reaction kinetics of the generation of aluminum fluoride. The result showed that the uncreated-core model was dominated by interface reaction and internal diffusion, the apparent reaction order n = 1, and the activation energy Ea = 30.8632 kJ · mol–1. Product characterization and kinetic analysis were employed to deduce the reaction mechanism of preparing aluminum fluoride. The theoretical basis for the low-cost recycling of fluorine resources in the tail gas of industrial phosphate ore was provided in this work.

Keywords

  • kinetic study
  • fluosilicic acid
  • aluminum fluoride
  • uncreated-core model
Open Access

The influence of sulfur addition on the hazard-type reaction of ilmenite ores with sulfuric acid

Published Online: 14 Oct 2021
Page range: 17 - 23

Abstract

Abstract

The paper presents results of thermokinetic investigation of the hazard-type reaction of Norwegian and Australian ilmenite ores with sulfuric acid, modified by the addition of elemental sulfur, to increase the process safety in industrial conditions. In the reactions of both ilmenite ores the addition of sulfur caused a reduction of the thermal power generated in the reaction and a decrease in the value of the thermokinetic parameter ΔTmax/Δτ for almost the whole range of initial concentrations of sulfuric acid. It was also found that the addition of sulfur to the reaction did not negatively affect the degree of ilmenite leaching. The interpretation of the obtained thermokinetic curves allowed to determine safe process conditions for both types of titanium raw materials.

Keywords

  • hazard-type reaction
  • ilmenite
  • titanium dioxide pigment
  • sulfur
Open Access

Nickel catalyst in coupled plasma-catalytic system for tar removal

Published Online: 14 Oct 2021
Page range: 24 - 29

Abstract

Abstract

Tar formation is a significant issue during biomass gasification. Catalytic removal of tars with the use of nickel catalyst allows to obtain high conversion rate but coke formation on catalysts surface lead to its deactivation. Toluene decomposition as a tar imitator was studied in gliding discharge plasma-catalytic system with the use of 5%, 10% and 15% by weight Ni and NiO catalyst on Al2O3 (α-Al2O3) and Peshiney (γ-Al2O3) carrier in gas composition similar to the gas after biomass pyrolysis. The optimal concentration of nickel was identified to be 10% by weight on Al2O3. It was stable in all studied initial toluene concentrations, discharge power while C7H8 conversion rate remained high – up to 82%. During the process, nickel catalysts were deactivated by sooth formation on the surface. On catalysts surface, toluene decomposition products were identified including benzyl alcohol and 3-hexen-2-one.

Keywords

  • gliding discharge
  • plasma-catalytic system
  • tar decomposition
  • nickel catalyst
Open Access

Reinvestigations of the Li2O–Al2O3 system. Part I: LiAlO2 and Li3AlO3

Published Online: 14 Oct 2021
Page range: 30 - 36

Abstract

Abstract

Reinvestigations of the Li2O–Al2O3 system focused on the synthesis and properties of LiAlO2 and Li3AlO3 phases have been performed with the help of XRD and IR measuring techniques and Li2CO3, LiOH·H2O, Al2O3-sl., α-Al2O3, Al(NO3)3·9H2O and boehmite as reactants. Results of investigations have shown the formation of α-, β-, and γ- polymorphs of LiAlO2. It was found that only the use of LiOH·H2O as a reactant yields to β-LiAlO2 as a reaction product. On the other hand, it was proved that Li3AlO3 does not form in the Li2O–Al2O3 system. A new method for the synthesis of α-LiAlO2 was developed, consisting in grinding the mixture of Li2CO3 and Al(NO3)3·9H2O and heating the obtained paste at the temperature range of 400–600 °C. The IR spectroscopy was used to characterize obtained phases.

Keywords

  • LiO–AlO system
  • LiAlO
  • LiAlO
  • XRD
  • IR
Open Access

Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration

Published Online: 14 Oct 2021
Page range: 37 - 42

Abstract

Abstract

The influence of temperature and sulfuric acid concentration on the enthalpy and the rate of heat release during the reaction of Norwegian and Australian ilmenites with sulfuric acid was determined. The experimental results obtained from calorimetric measurements were compared with theoretical calculations based on the oxide composition and the phase composition of the raw material. Experimentally determined heat of reaction for Norwegian ilmenite (900–940 kJ/kg) and Australian ilmenite (800–840 kJ/kg) showed good agreement with theoretical calculations based on the phase composition of the raw material. It was found that the enthalpy of ilmenites decomposition reaction does not depend on the concentration of sulfuric acid in the concentration range from 83% to 93%. It was also demonstrated that the temperature and concentration of sulfuric acid have a significant impact on the thermokinetics of the decomposition process, increasing the value of the average rate of temperature change.

Keywords

  • ilmenites digestion
  • sulfuric acid
  • enthalpy of reaction
Open Access

Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine

Published Online: 14 Oct 2021
Page range: 43 - 48

Abstract

Abstract

This work deals with a study of the effect of temperature on the cyclohexylamine disproportionation to dicyclohexylamine, conjointly with the thermodynamic analysis of this process. The laboratory experiments were carried out in a glass tubular continuous-flow reactor in a gaseous phase at the reaction temperature 433–463 K over a nickel catalyst. The results show, that the temperature has a trifling effect on equilibrium conversion of cyclohexylamine. However, temperature affects the formation of hydrocarbons, benzene and cyclohexane, and dehydrogenation products of dicyclohexylamine, i.e. N-cyclohexylidenecyclohexanamine and N-phenylcyclohexylamine. The latter one is the dominant product of dicyclohexylamine dehydrogenation. The disproportionation of cyclohexylamine has slightly exothermic character. At the experimental reaction temperature range, the cyclohexylamine disproportionation is spontaneous reaction and other reactions of this process are non-spontaneous.

Keywords

  • Cyclohexylamine
  • Dicyclohexylamine
  • Disproportionation
  • Chemical equilibrium
  • Thermodynamics
Open Access

Effect of chemical modification of hydrodistillation on yield, composition and biological activity of Rosmarinus officinalis essential oil

Published Online: 14 Oct 2021
Page range: 49 - 53

Abstract

Abstract

Studies on the chemical modifications of Rosmarinus officinalis essential oil hydrodistillation process (HD) by using 5% citric acid (CA-HD) and 5% trisodium citrate (TSC-HD) as a water phase were performed. Composition of essential oils obtained in conventional and modified conditions was analyzed by gas chromatography with mass selective detector method (GC-MS) and compared. Antioxidant activity of all essential oils was determined spectrophotometrically by using DPPH radical scavenging method. It was found that applied modifications of hydrodistillation process enhanced yields and antioxidant activity and the best results were obtained using 5% citric acid as a modifier. Effect of this modification on fungicidal activity of essential oils against 8 various fungi strains (Alternaria alternata, Botrytis cinerea, Fusarium culmorum, Phythophtora cactorum, Rhizoctonia solani, Phythophtora infestans, Sclerotinia sclerotiorum and Ascosphaera apis) was also determined and in most cases enhanced activity was observed.

Keywords

  • essential oil
  • chemical modification of hydrodistillation
  • antioxidant activity
  • fungicidal activity
8 Articles
Open Access

Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system

Published Online: 14 Oct 2021
Page range: 1 - 9

Abstract

Abstract

Eco-friendly synthesis of ethyl 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate (4) ligand (L) using microwave irradiation technique was described. The structure of thioxoimidazolidine derivative ligand compound has been established based on different types of analyses such as infrared, 1H-NMR, 13C-NMR, and mass spectra as well as elemental analysis. The copper, cobalt, and nickel(II) complexes with molecular formula [M(L)(H2O)4]Cl2 (where M = Co(II), Ni(II), and Cu(II), L = thioxoimidazolidine derivative ligand), have been prepared and well-characterized using microanalytical, conductivity measurements, magnetic, spectroscopic, and physical analyses. Upon the outcome results of analyses, the stoichiometry of the synthesized complexes is 1:1 (M:L). The molar conductance values concluded that the behavior of metal complexes was electrolytes. The 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate chelate acts as a monovalent bidentate fashion via nitrogen and oxygen atoms of both thioxoimidazolidine and propanoate ester moieties. The geometric structures of the synthesized metal complexes are an octahedral configuration based on spectroscopic and magnetic moment studies. The thermogravimetric assignments deduced that the presence of four coordinated water molecules. The synthesized copper(II), cobalt(II), and nickel(II) complexes were biologically checked against G+ and G- bacteria and two species of fungi (Aspergillus Nigaer, and Penicillium Sp.).

Keywords

  • Imidazolidine
  • Microwave irradiation
  • Coordination
  • Biological activity
Open Access

Kinetic Study on the Preparation of Aluminum Fluoride Based on Fluosilicic Acid

Published Online: 14 Oct 2021
Page range: 10 - 16

Abstract

Abstract

Reasonable mathematical derivation and mechanism model in the process of producing aluminum fluoride by fluosilicic acid is the key to the industrial treatment of fluorine resources in the tail gas of phosphate ore. In this work, aluminum fluoride was generated directly by fluosilicic acid to extract fluorine from the tail gas of phosphate rock. The uncreated-core model dominated by interfacial reaction and the uncreated-core model dominated by internal diffusion-reaction were then respectively utilized to describe the reaction kinetics of the generation of aluminum fluoride. The result showed that the uncreated-core model was dominated by interface reaction and internal diffusion, the apparent reaction order n = 1, and the activation energy Ea = 30.8632 kJ · mol–1. Product characterization and kinetic analysis were employed to deduce the reaction mechanism of preparing aluminum fluoride. The theoretical basis for the low-cost recycling of fluorine resources in the tail gas of industrial phosphate ore was provided in this work.

Keywords

  • kinetic study
  • fluosilicic acid
  • aluminum fluoride
  • uncreated-core model
Open Access

The influence of sulfur addition on the hazard-type reaction of ilmenite ores with sulfuric acid

Published Online: 14 Oct 2021
Page range: 17 - 23

Abstract

Abstract

The paper presents results of thermokinetic investigation of the hazard-type reaction of Norwegian and Australian ilmenite ores with sulfuric acid, modified by the addition of elemental sulfur, to increase the process safety in industrial conditions. In the reactions of both ilmenite ores the addition of sulfur caused a reduction of the thermal power generated in the reaction and a decrease in the value of the thermokinetic parameter ΔTmax/Δτ for almost the whole range of initial concentrations of sulfuric acid. It was also found that the addition of sulfur to the reaction did not negatively affect the degree of ilmenite leaching. The interpretation of the obtained thermokinetic curves allowed to determine safe process conditions for both types of titanium raw materials.

Keywords

  • hazard-type reaction
  • ilmenite
  • titanium dioxide pigment
  • sulfur
Open Access

Nickel catalyst in coupled plasma-catalytic system for tar removal

Published Online: 14 Oct 2021
Page range: 24 - 29

Abstract

Abstract

Tar formation is a significant issue during biomass gasification. Catalytic removal of tars with the use of nickel catalyst allows to obtain high conversion rate but coke formation on catalysts surface lead to its deactivation. Toluene decomposition as a tar imitator was studied in gliding discharge plasma-catalytic system with the use of 5%, 10% and 15% by weight Ni and NiO catalyst on Al2O3 (α-Al2O3) and Peshiney (γ-Al2O3) carrier in gas composition similar to the gas after biomass pyrolysis. The optimal concentration of nickel was identified to be 10% by weight on Al2O3. It was stable in all studied initial toluene concentrations, discharge power while C7H8 conversion rate remained high – up to 82%. During the process, nickel catalysts were deactivated by sooth formation on the surface. On catalysts surface, toluene decomposition products were identified including benzyl alcohol and 3-hexen-2-one.

Keywords

  • gliding discharge
  • plasma-catalytic system
  • tar decomposition
  • nickel catalyst
Open Access

Reinvestigations of the Li2O–Al2O3 system. Part I: LiAlO2 and Li3AlO3

Published Online: 14 Oct 2021
Page range: 30 - 36

Abstract

Abstract

Reinvestigations of the Li2O–Al2O3 system focused on the synthesis and properties of LiAlO2 and Li3AlO3 phases have been performed with the help of XRD and IR measuring techniques and Li2CO3, LiOH·H2O, Al2O3-sl., α-Al2O3, Al(NO3)3·9H2O and boehmite as reactants. Results of investigations have shown the formation of α-, β-, and γ- polymorphs of LiAlO2. It was found that only the use of LiOH·H2O as a reactant yields to β-LiAlO2 as a reaction product. On the other hand, it was proved that Li3AlO3 does not form in the Li2O–Al2O3 system. A new method for the synthesis of α-LiAlO2 was developed, consisting in grinding the mixture of Li2CO3 and Al(NO3)3·9H2O and heating the obtained paste at the temperature range of 400–600 °C. The IR spectroscopy was used to characterize obtained phases.

Keywords

  • LiO–AlO system
  • LiAlO
  • LiAlO
  • XRD
  • IR
Open Access

Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration

Published Online: 14 Oct 2021
Page range: 37 - 42

Abstract

Abstract

The influence of temperature and sulfuric acid concentration on the enthalpy and the rate of heat release during the reaction of Norwegian and Australian ilmenites with sulfuric acid was determined. The experimental results obtained from calorimetric measurements were compared with theoretical calculations based on the oxide composition and the phase composition of the raw material. Experimentally determined heat of reaction for Norwegian ilmenite (900–940 kJ/kg) and Australian ilmenite (800–840 kJ/kg) showed good agreement with theoretical calculations based on the phase composition of the raw material. It was found that the enthalpy of ilmenites decomposition reaction does not depend on the concentration of sulfuric acid in the concentration range from 83% to 93%. It was also demonstrated that the temperature and concentration of sulfuric acid have a significant impact on the thermokinetics of the decomposition process, increasing the value of the average rate of temperature change.

Keywords

  • ilmenites digestion
  • sulfuric acid
  • enthalpy of reaction
Open Access

Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine

Published Online: 14 Oct 2021
Page range: 43 - 48

Abstract

Abstract

This work deals with a study of the effect of temperature on the cyclohexylamine disproportionation to dicyclohexylamine, conjointly with the thermodynamic analysis of this process. The laboratory experiments were carried out in a glass tubular continuous-flow reactor in a gaseous phase at the reaction temperature 433–463 K over a nickel catalyst. The results show, that the temperature has a trifling effect on equilibrium conversion of cyclohexylamine. However, temperature affects the formation of hydrocarbons, benzene and cyclohexane, and dehydrogenation products of dicyclohexylamine, i.e. N-cyclohexylidenecyclohexanamine and N-phenylcyclohexylamine. The latter one is the dominant product of dicyclohexylamine dehydrogenation. The disproportionation of cyclohexylamine has slightly exothermic character. At the experimental reaction temperature range, the cyclohexylamine disproportionation is spontaneous reaction and other reactions of this process are non-spontaneous.

Keywords

  • Cyclohexylamine
  • Dicyclohexylamine
  • Disproportionation
  • Chemical equilibrium
  • Thermodynamics
Open Access

Effect of chemical modification of hydrodistillation on yield, composition and biological activity of Rosmarinus officinalis essential oil

Published Online: 14 Oct 2021
Page range: 49 - 53

Abstract

Abstract

Studies on the chemical modifications of Rosmarinus officinalis essential oil hydrodistillation process (HD) by using 5% citric acid (CA-HD) and 5% trisodium citrate (TSC-HD) as a water phase were performed. Composition of essential oils obtained in conventional and modified conditions was analyzed by gas chromatography with mass selective detector method (GC-MS) and compared. Antioxidant activity of all essential oils was determined spectrophotometrically by using DPPH radical scavenging method. It was found that applied modifications of hydrodistillation process enhanced yields and antioxidant activity and the best results were obtained using 5% citric acid as a modifier. Effect of this modification on fungicidal activity of essential oils against 8 various fungi strains (Alternaria alternata, Botrytis cinerea, Fusarium culmorum, Phythophtora cactorum, Rhizoctonia solani, Phythophtora infestans, Sclerotinia sclerotiorum and Ascosphaera apis) was also determined and in most cases enhanced activity was observed.

Keywords

  • essential oil
  • chemical modification of hydrodistillation
  • antioxidant activity
  • fungicidal activity

Plan your remote conference with Sciendo