Journal & Issues

Volume 25 (2023): Issue 2 (June 2023)

Volume 25 (2023): Issue 1 (March 2023)

Volume 24 (2022): Issue 4 (December 2022)

Volume 24 (2022): Issue 3 (September 2022)

Volume 24 (2022): Issue 2 (June 2022)

Volume 24 (2022): Issue 1 (March 2022)

Volume 23 (2021): Issue 4 (December 2021)

Volume 23 (2021): Issue 3 (September 2021)

Volume 23 (2021): Issue 2 (June 2021)

Volume 23 (2021): Issue 1 (March 2021)

Volume 22 (2020): Issue 4 (December 2020)

Volume 22 (2020): Issue 3 (September 2020)

Volume 22 (2020): Issue 2 (June 2020)

Volume 22 (2020): Issue 1 (March 2020)

Volume 21 (2019): Issue 4 (December 2019)

Volume 21 (2019): Issue 3 (September 2019)

Volume 21 (2019): Issue 2 (June 2019)

Volume 21 (2019): Issue 1 (March 2019)

Volume 20 (2018): Issue 4 (December 2018)

Volume 20 (2018): Issue 3 (September 2018)

Volume 20 (2018): Issue 2 (June 2018)

Volume 20 (2018): Issue 1 (March 2018)

Volume 19 (2017): Issue 4 (December 2017)

Volume 19 (2017): Issue 3 (September 2017)

Volume 19 (2017): Issue 2 (June 2017)

Volume 19 (2017): Issue 1 (March 2017)

Volume 18 (2016): Issue 4 (December 2016)

Volume 18 (2016): Issue 3 (September 2016)

Volume 18 (2016): Issue 2 (June 2016)

Volume 18 (2016): Issue 1 (March 2016)

Volume 17 (2015): Issue 4 (December 2015)

Volume 17 (2015): Issue 3 (September 2015)

Volume 17 (2015): Issue 2 (June 2015)

Volume 17 (2015): Issue 1 (March 2015)

Volume 16 (2014): Issue 4 (December 2014)

Volume 16 (2014): Issue 3 (September 2014)

Volume 16 (2014): Issue 2 (June 2014)

Volume 16 (2014): Issue 1 (March 2014)

Volume 15 (2013): Issue 4 (December 2013)

Volume 15 (2013): Issue 3 (September 2013)

Volume 15 (2013): Issue 1 (March 2013)

Volume 14 (2012): Issue 4 (December 2012)

Volume 14 (2012): Issue 3 (October 2012)

Volume 14 (2012): Issue 2 (January 2012)

Volume 14 (2012): Issue 1 (January 2012)

Volume 13 (2011): Issue 4 (January 2011)

Volume 13 (2011): Issue 3 (January 2011)

Volume 13 (2011): Issue 2 (January 2011)

Volume 13 (2011): Issue 1 (January 2011)

Volume 12 (2010): Issue 4 (January 2010)

Volume 12 (2010): Issue 3 (January 2010)

Volume 12 (2010): Issue 2 (January 2010)

Volume 12 (2010): Issue 1 (January 2010)

Volume 11 (2009): Issue 4 (January 2009)

Volume 11 (2009): Issue 3 (January 2009)

Volume 11 (2009): Issue 2 (January 2009)

Volume 11 (2009): Issue 1 (January 2009)

Volume 10 (2008): Issue 4 (January 2008)

Volume 10 (2008): Issue 3 (January 2008)

Volume 10 (2008): Issue 2 (January 2008)

Volume 10 (2008): Issue 1 (January 2008)

Volume 9 (2007): Issue 4 (December 2007)

Volume 9 (2007): Issue 3 (January 2007)

Volume 9 (2007): Issue 2 (January 2007)

Volume 9 (2007): Issue 1 (January 2007)

Journal Details
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Search

Volume 22 (2020): Issue 2 (June 2020)

Journal Details
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Search

0 Articles
Open Access

Selected magnesium compounds as possible inhibitors of ammonium nitrate decomposition

Published Online: 13 May 2020
Page range: 1 - 8

Abstract

Abstract

Ammonium nitrate (AN) is considered to be a very hazardous and difficult to handle component of mineral fertilizers. Differential thermal analysis coupled with thermogravimetry and mass spectrometry was used to determine the possible inhibiting effect of selected magnesium compounds on thermal decomposition of AN. Each additive was mixed with AN to create samples with AN:magnesium compound mass ratios of 4:1, 9:1 and 49:1. Most of analyzed compounds enhanced thermal stability of ammonium nitrate, increasing the temperature of the beginning of exothermic decomposition and decreasing the amount of generated heat. Magnesium chloride hexahydrate was determined to accelerate the decomposition of AN while magnesium sulphate, sulphate heptahydrate, nitrate hexahydrate together with magnesite and dolomite minerals were defined as inhibiting agents.

Keywords

  • ammonium nitrate
  • thermal analysis
  • magnesium compounds
  • exothermic decomposition
  • phase transition
Open Access

Solvent-free synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives by Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst

Published Online: 13 May 2020
Page range: 9 - 19

Abstract

Abstract

A green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.

Keywords

  • 1-amidoalkyl-2-naphthol
  • 3-amino-1-phenyl-1 benzo[]chromene-2-carbonitrile
  • solvent-free conditions
  • magnetic
  • catalyst
Open Access

SCMNPs@Uridine/Zn: An efficient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives under solvent-free conditions

Published Online: 13 May 2020
Page range: 20 - 33

Abstract

Abstract

SCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.

Keywords

  • nanocatalyst
  • synthesis of tricyclic
  • carboxylate
  • efficient heterogeneous
Open Access

UV polymerization and property analysis of maleacylated methyl cellulose acrylic acid absorbent resin

Published Online: 13 May 2020
Page range: 34 - 41

Abstract

Abstract

In this paper, maleic anhydride (MA) was grafted onto methyl cellulose (MC) and then reacted with acrylic acid to synthesize a high gel strength and fast water absorption resin (AA-co-MC-g-MA) by UV polymerization. The reaction conditions of maleylated methylcellulose (MC-g-MA) were investigated, including the ratio of MC to MA, reaction time and catalyst amount. In addition, the reaction conditions for the synthesis of super absorbent resin were as follows: the amount of MC-g-MA, the degree of substitution of MC-g-MA, polymerization time, and the amount of initiator. Under optimal conditions, the maximum water absorption volume of synthetic resin was 2116 g/g, and the maximum salt absorption rate was 139 g/g. The water absorption resin prepared this time had high water absorption, water retention, excellent pH sensitivity, etc. It was hoped that it will have a good application prospect in the field of industrial production and agriculture in the future.

Keywords

  • ultraviolet
  • maleylated methylcellulose
  • absorbent resin
Open Access

Three phase partitioning as a rapid and efficient method for purification of plant-esterase from wheat flour

Published Online: 13 May 2020
Page range: 42 - 49

Abstract

Abstract

Three-phase partitioning (TPP) was used to purify plant-esterase from wheat flour. Effect of various process parameters has been evaluated and plant-esterase was purified to 11.35-fold by optimized single step TPP system (50%, (w/v) (NH4)2SO4 saturation, 1:1 (v/v) ratio of crude extract: t-butanol at pH 4).The enzyme was found to be exclusively partitioned in the aqueous phase. Using TPP system, plant-esterase quickly purified to homogeneity with very high purity and activity. On the basis of single factor research, purification process was optimized by using response surface method, established a new type of high efficient purification plant-esterase method. To the best of our knowledge, this is the first report for purification and characterization of plant-esterase by using three phase partitioning (TPP). The results indicated that, TPP is a simple, quick, economical and very attractive process for purification of plant-esterase compared to conventional chromatographic protocols.

Keywords

  • Purification
  • Plant esterase
  • Three phase partitioning
Open Access

Synthesis of antibacterial polyurethane film and its properties

Published Online: 13 May 2020
Page range: 50 - 55

Abstract

Abstract

Polyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.

Keywords

  • polyurethane
  • Ag nanoparticles
  • antibacterial
  • composite film
Open Access

Free radical scavenging ability of sodium lignosulfonate and its application in food grade polypropylene

Published Online: 13 May 2020
Page range: 56 - 66

Abstract

Abstract

Sodium lignosulfonate (SL) was prepared from waste of cotton lignin (CL) through hydrothermal reaction method. Orthogonal experiment was designed with value of OIT as objective function. Polypropylene (PP) is a polymer produced by the addition polymerization of propylene. It is a white waxy material with a transparent and light appearance, which is widely used in food and pharmaceutical packaging. The results of GPC and TG analysis revealed that SL has stable thermal properties, which means that SL has the potential to be an antioxidant for PP materials. In addition, the scavenging effects of CL and SL were studied. The obtained results exhibited that the SL can obviously increase the scavenging effect on free radicals and it is a kind of new synthetic antioxidant with antioxidant property, which could effectively delay the oxidation of PP. Subsequent rheological experiments proved that the SL/PP sample can improve the heat-resistant oxygen performance of PP under the thermal oxygen shearing environment. Combined with the effect of SL on the mechanical properties of PP before aging, SL has a stabilizing effect on PP thermal oxygen aging.

Keywords

  • cotton lignin
  • sodium lignosulfonate
  • free radical scavenging
  • antioxidant properties
  • food grade PP
Open Access

Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger

Published Online: 13 May 2020
Page range: 67 - 72

Abstract

Abstract

The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.

Keywords

  • catalase
  • thermal deactivation
  • thermodynamics parameters
  • hydrogen peroxide
Open Access

The impact of reagents concentration on the efficiency of obtaining high-purity magnesium hydroxide

Published Online: 13 May 2020
Page range: 73 - 77

Abstract

Abstract

The work presents the impact of reagents concentration and the drying process on the efficiency of obtaining magnesium hydroxide and its specific surface area. Magnesium sulphate(VI) within the concentration range of 0.7–2.0 mol/dm3 was used in the research as magnesium feedstock and sodium hydroxide was used as a precipitating agent within the same concentration range. The process of obtaining magnesium hydroxide was carried out with a 25% excess of the precipitating agent in relation to the reaction stoichiometry. The obtained suspension was separated by way of multi-stage sedimentation with the use of acetone and freezing samples. Depending on the concentration of reagents the efficiency of obtaining magnesium hydroxide fell within the range of 88–99%, whereas the specific surface area – within 115–609 m2/g, while the high purity of samples above 99% of magnesium hydroxide was maintained.

Keywords

  • magnesium hydroxide
  • precipitation method
  • inorganic flame retardants
Open Access

Effects of coupling agent on antioxidant properties and structure of PP/cotton stalk lignin composites

Published Online: 13 May 2020
Page range: 78 - 85

Abstract

Abstract

In this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.

Keywords

  • polypropylene
  • coupling agent
  • cotton stalk lignin
  • composite material
0 Articles
Open Access

Selected magnesium compounds as possible inhibitors of ammonium nitrate decomposition

Published Online: 13 May 2020
Page range: 1 - 8

Abstract

Abstract

Ammonium nitrate (AN) is considered to be a very hazardous and difficult to handle component of mineral fertilizers. Differential thermal analysis coupled with thermogravimetry and mass spectrometry was used to determine the possible inhibiting effect of selected magnesium compounds on thermal decomposition of AN. Each additive was mixed with AN to create samples with AN:magnesium compound mass ratios of 4:1, 9:1 and 49:1. Most of analyzed compounds enhanced thermal stability of ammonium nitrate, increasing the temperature of the beginning of exothermic decomposition and decreasing the amount of generated heat. Magnesium chloride hexahydrate was determined to accelerate the decomposition of AN while magnesium sulphate, sulphate heptahydrate, nitrate hexahydrate together with magnesite and dolomite minerals were defined as inhibiting agents.

Keywords

  • ammonium nitrate
  • thermal analysis
  • magnesium compounds
  • exothermic decomposition
  • phase transition
Open Access

Solvent-free synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives by Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst

Published Online: 13 May 2020
Page range: 9 - 19

Abstract

Abstract

A green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.

Keywords

  • 1-amidoalkyl-2-naphthol
  • 3-amino-1-phenyl-1 benzo[]chromene-2-carbonitrile
  • solvent-free conditions
  • magnetic
  • catalyst
Open Access

SCMNPs@Uridine/Zn: An efficient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives under solvent-free conditions

Published Online: 13 May 2020
Page range: 20 - 33

Abstract

Abstract

SCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.

Keywords

  • nanocatalyst
  • synthesis of tricyclic
  • carboxylate
  • efficient heterogeneous
Open Access

UV polymerization and property analysis of maleacylated methyl cellulose acrylic acid absorbent resin

Published Online: 13 May 2020
Page range: 34 - 41

Abstract

Abstract

In this paper, maleic anhydride (MA) was grafted onto methyl cellulose (MC) and then reacted with acrylic acid to synthesize a high gel strength and fast water absorption resin (AA-co-MC-g-MA) by UV polymerization. The reaction conditions of maleylated methylcellulose (MC-g-MA) were investigated, including the ratio of MC to MA, reaction time and catalyst amount. In addition, the reaction conditions for the synthesis of super absorbent resin were as follows: the amount of MC-g-MA, the degree of substitution of MC-g-MA, polymerization time, and the amount of initiator. Under optimal conditions, the maximum water absorption volume of synthetic resin was 2116 g/g, and the maximum salt absorption rate was 139 g/g. The water absorption resin prepared this time had high water absorption, water retention, excellent pH sensitivity, etc. It was hoped that it will have a good application prospect in the field of industrial production and agriculture in the future.

Keywords

  • ultraviolet
  • maleylated methylcellulose
  • absorbent resin
Open Access

Three phase partitioning as a rapid and efficient method for purification of plant-esterase from wheat flour

Published Online: 13 May 2020
Page range: 42 - 49

Abstract

Abstract

Three-phase partitioning (TPP) was used to purify plant-esterase from wheat flour. Effect of various process parameters has been evaluated and plant-esterase was purified to 11.35-fold by optimized single step TPP system (50%, (w/v) (NH4)2SO4 saturation, 1:1 (v/v) ratio of crude extract: t-butanol at pH 4).The enzyme was found to be exclusively partitioned in the aqueous phase. Using TPP system, plant-esterase quickly purified to homogeneity with very high purity and activity. On the basis of single factor research, purification process was optimized by using response surface method, established a new type of high efficient purification plant-esterase method. To the best of our knowledge, this is the first report for purification and characterization of plant-esterase by using three phase partitioning (TPP). The results indicated that, TPP is a simple, quick, economical and very attractive process for purification of plant-esterase compared to conventional chromatographic protocols.

Keywords

  • Purification
  • Plant esterase
  • Three phase partitioning
Open Access

Synthesis of antibacterial polyurethane film and its properties

Published Online: 13 May 2020
Page range: 50 - 55

Abstract

Abstract

Polyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.

Keywords

  • polyurethane
  • Ag nanoparticles
  • antibacterial
  • composite film
Open Access

Free radical scavenging ability of sodium lignosulfonate and its application in food grade polypropylene

Published Online: 13 May 2020
Page range: 56 - 66

Abstract

Abstract

Sodium lignosulfonate (SL) was prepared from waste of cotton lignin (CL) through hydrothermal reaction method. Orthogonal experiment was designed with value of OIT as objective function. Polypropylene (PP) is a polymer produced by the addition polymerization of propylene. It is a white waxy material with a transparent and light appearance, which is widely used in food and pharmaceutical packaging. The results of GPC and TG analysis revealed that SL has stable thermal properties, which means that SL has the potential to be an antioxidant for PP materials. In addition, the scavenging effects of CL and SL were studied. The obtained results exhibited that the SL can obviously increase the scavenging effect on free radicals and it is a kind of new synthetic antioxidant with antioxidant property, which could effectively delay the oxidation of PP. Subsequent rheological experiments proved that the SL/PP sample can improve the heat-resistant oxygen performance of PP under the thermal oxygen shearing environment. Combined with the effect of SL on the mechanical properties of PP before aging, SL has a stabilizing effect on PP thermal oxygen aging.

Keywords

  • cotton lignin
  • sodium lignosulfonate
  • free radical scavenging
  • antioxidant properties
  • food grade PP
Open Access

Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger

Published Online: 13 May 2020
Page range: 67 - 72

Abstract

Abstract

The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.

Keywords

  • catalase
  • thermal deactivation
  • thermodynamics parameters
  • hydrogen peroxide
Open Access

The impact of reagents concentration on the efficiency of obtaining high-purity magnesium hydroxide

Published Online: 13 May 2020
Page range: 73 - 77

Abstract

Abstract

The work presents the impact of reagents concentration and the drying process on the efficiency of obtaining magnesium hydroxide and its specific surface area. Magnesium sulphate(VI) within the concentration range of 0.7–2.0 mol/dm3 was used in the research as magnesium feedstock and sodium hydroxide was used as a precipitating agent within the same concentration range. The process of obtaining magnesium hydroxide was carried out with a 25% excess of the precipitating agent in relation to the reaction stoichiometry. The obtained suspension was separated by way of multi-stage sedimentation with the use of acetone and freezing samples. Depending on the concentration of reagents the efficiency of obtaining magnesium hydroxide fell within the range of 88–99%, whereas the specific surface area – within 115–609 m2/g, while the high purity of samples above 99% of magnesium hydroxide was maintained.

Keywords

  • magnesium hydroxide
  • precipitation method
  • inorganic flame retardants
Open Access

Effects of coupling agent on antioxidant properties and structure of PP/cotton stalk lignin composites

Published Online: 13 May 2020
Page range: 78 - 85

Abstract

Abstract

In this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.

Keywords

  • polypropylene
  • coupling agent
  • cotton stalk lignin
  • composite material