Ammonium nitrate (AN) is considered to be a very hazardous and difficult to handle component of mineral fertilizers. Differential thermal analysis coupled with thermogravimetry and mass spectrometry was used to determine the possible inhibiting effect of selected magnesium compounds on thermal decomposition of AN. Each additive was mixed with AN to create samples with AN:magnesium compound mass ratios of 4:1, 9:1 and 49:1. Most of analyzed compounds enhanced thermal stability of ammonium nitrate, increasing the temperature of the beginning of exothermic decomposition and decreasing the amount of generated heat. Magnesium chloride hexahydrate was determined to accelerate the decomposition of AN while magnesium sulphate, sulphate heptahydrate, nitrate hexahydrate together with magnesite and dolomite minerals were defined as inhibiting agents.
A green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.
SCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.
In this paper, maleic anhydride (MA) was grafted onto methyl cellulose (MC) and then reacted with acrylic acid to synthesize a high gel strength and fast water absorption resin (AA-co-MC-g-MA) by UV polymerization. The reaction conditions of maleylated methylcellulose (MC-g-MA) were investigated, including the ratio of MC to MA, reaction time and catalyst amount. In addition, the reaction conditions for the synthesis of super absorbent resin were as follows: the amount of MC-g-MA, the degree of substitution of MC-g-MA, polymerization time, and the amount of initiator. Under optimal conditions, the maximum water absorption volume of synthetic resin was 2116 g/g, and the maximum salt absorption rate was 139 g/g. The water absorption resin prepared this time had high water absorption, water retention, excellent pH sensitivity, etc. It was hoped that it will have a good application prospect in the field of industrial production and agriculture in the future.
Three-phase partitioning (TPP) was used to purify plant-esterase from wheat flour. Effect of various process parameters has been evaluated and plant-esterase was purified to 11.35-fold by optimized single step TPP system (50%, (w/v) (NH4)2SO4 saturation, 1:1 (v/v) ratio of crude extract: t-butanol at pH 4).The enzyme was found to be exclusively partitioned in the aqueous phase. Using TPP system, plant-esterase quickly purified to homogeneity with very high purity and activity. On the basis of single factor research, purification process was optimized by using response surface method, established a new type of high efficient purification plant-esterase method. To the best of our knowledge, this is the first report for purification and characterization of plant-esterase by using three phase partitioning (TPP). The results indicated that, TPP is a simple, quick, economical and very attractive process for purification of plant-esterase compared to conventional chromatographic protocols.
Polyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.
Sodium lignosulfonate (SL) was prepared from waste of cotton lignin (CL) through hydrothermal reaction method. Orthogonal experiment was designed with value of OIT as objective function. Polypropylene (PP) is a polymer produced by the addition polymerization of propylene. It is a white waxy material with a transparent and light appearance, which is widely used in food and pharmaceutical packaging. The results of GPC and TG analysis revealed that SL has stable thermal properties, which means that SL has the potential to be an antioxidant for PP materials. In addition, the scavenging effects of CL and SL were studied. The obtained results exhibited that the SL can obviously increase the scavenging effect on free radicals and it is a kind of new synthetic antioxidant with antioxidant property, which could effectively delay the oxidation of PP. Subsequent rheological experiments proved that the SL/PP sample can improve the heat-resistant oxygen performance of PP under the thermal oxygen shearing environment. Combined with the effect of SL on the mechanical properties of PP before aging, SL has a stabilizing effect on PP thermal oxygen aging.
The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.
The work presents the impact of reagents concentration and the drying process on the efficiency of obtaining magnesium hydroxide and its specific surface area. Magnesium sulphate(VI) within the concentration range of 0.7–2.0 mol/dm3 was used in the research as magnesium feedstock and sodium hydroxide was used as a precipitating agent within the same concentration range. The process of obtaining magnesium hydroxide was carried out with a 25% excess of the precipitating agent in relation to the reaction stoichiometry. The obtained suspension was separated by way of multi-stage sedimentation with the use of acetone and freezing samples. Depending on the concentration of reagents the efficiency of obtaining magnesium hydroxide fell within the range of 88–99%, whereas the specific surface area – within 115–609 m2/g, while the high purity of samples above 99% of magnesium hydroxide was maintained.
In this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.
Ammonium nitrate (AN) is considered to be a very hazardous and difficult to handle component of mineral fertilizers. Differential thermal analysis coupled with thermogravimetry and mass spectrometry was used to determine the possible inhibiting effect of selected magnesium compounds on thermal decomposition of AN. Each additive was mixed with AN to create samples with AN:magnesium compound mass ratios of 4:1, 9:1 and 49:1. Most of analyzed compounds enhanced thermal stability of ammonium nitrate, increasing the temperature of the beginning of exothermic decomposition and decreasing the amount of generated heat. Magnesium chloride hexahydrate was determined to accelerate the decomposition of AN while magnesium sulphate, sulphate heptahydrate, nitrate hexahydrate together with magnesite and dolomite minerals were defined as inhibiting agents.
A green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.
SCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.
In this paper, maleic anhydride (MA) was grafted onto methyl cellulose (MC) and then reacted with acrylic acid to synthesize a high gel strength and fast water absorption resin (AA-co-MC-g-MA) by UV polymerization. The reaction conditions of maleylated methylcellulose (MC-g-MA) were investigated, including the ratio of MC to MA, reaction time and catalyst amount. In addition, the reaction conditions for the synthesis of super absorbent resin were as follows: the amount of MC-g-MA, the degree of substitution of MC-g-MA, polymerization time, and the amount of initiator. Under optimal conditions, the maximum water absorption volume of synthetic resin was 2116 g/g, and the maximum salt absorption rate was 139 g/g. The water absorption resin prepared this time had high water absorption, water retention, excellent pH sensitivity, etc. It was hoped that it will have a good application prospect in the field of industrial production and agriculture in the future.
Three-phase partitioning (TPP) was used to purify plant-esterase from wheat flour. Effect of various process parameters has been evaluated and plant-esterase was purified to 11.35-fold by optimized single step TPP system (50%, (w/v) (NH4)2SO4 saturation, 1:1 (v/v) ratio of crude extract: t-butanol at pH 4).The enzyme was found to be exclusively partitioned in the aqueous phase. Using TPP system, plant-esterase quickly purified to homogeneity with very high purity and activity. On the basis of single factor research, purification process was optimized by using response surface method, established a new type of high efficient purification plant-esterase method. To the best of our knowledge, this is the first report for purification and characterization of plant-esterase by using three phase partitioning (TPP). The results indicated that, TPP is a simple, quick, economical and very attractive process for purification of plant-esterase compared to conventional chromatographic protocols.
Polyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.
Sodium lignosulfonate (SL) was prepared from waste of cotton lignin (CL) through hydrothermal reaction method. Orthogonal experiment was designed with value of OIT as objective function. Polypropylene (PP) is a polymer produced by the addition polymerization of propylene. It is a white waxy material with a transparent and light appearance, which is widely used in food and pharmaceutical packaging. The results of GPC and TG analysis revealed that SL has stable thermal properties, which means that SL has the potential to be an antioxidant for PP materials. In addition, the scavenging effects of CL and SL were studied. The obtained results exhibited that the SL can obviously increase the scavenging effect on free radicals and it is a kind of new synthetic antioxidant with antioxidant property, which could effectively delay the oxidation of PP. Subsequent rheological experiments proved that the SL/PP sample can improve the heat-resistant oxygen performance of PP under the thermal oxygen shearing environment. Combined with the effect of SL on the mechanical properties of PP before aging, SL has a stabilizing effect on PP thermal oxygen aging.
The thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.
The work presents the impact of reagents concentration and the drying process on the efficiency of obtaining magnesium hydroxide and its specific surface area. Magnesium sulphate(VI) within the concentration range of 0.7–2.0 mol/dm3 was used in the research as magnesium feedstock and sodium hydroxide was used as a precipitating agent within the same concentration range. The process of obtaining magnesium hydroxide was carried out with a 25% excess of the precipitating agent in relation to the reaction stoichiometry. The obtained suspension was separated by way of multi-stage sedimentation with the use of acetone and freezing samples. Depending on the concentration of reagents the efficiency of obtaining magnesium hydroxide fell within the range of 88–99%, whereas the specific surface area – within 115–609 m2/g, while the high purity of samples above 99% of magnesium hydroxide was maintained.
In this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.