Biodiesel is a promising energy substitute of fossil fuels since it is produced from renewable and biodegradable sources. In the present work, reactive distillation (RD) process is designed and simulated using Aspen Plus process simulator to produce biodiesel of high purity through esterification reaction. The simultaneous reaction and separation in same unit enhances the biodiesel yield and composition in RD process. Two flowsheets are proposed in present work. In the first flowsheet, the unreacted methanol is recycled back to reactive distillation column. Biodiesel with 99.5 mol% purity is obtained in product stream while the byproduct stream comprises 95.2 mol% water, which has to be treated further. In the second flowsheet, a part of methanol recycle is split and purged. In this case, the biodiesel composition in product stream is 99.7 mol% whereas water composition is 99.9 mol% in byproduct stream, which can be reused for other process without treatment.
The exploration and utilization of petroleum are potential hazards to the environment. Successful determination of petroleum contamination in ground relies on accurate definition of the type, source and quantity of contaminant. For this purpose the Rock-Eval® pyrolysis was applied, which is a rapid quantitative (Bulk Rock method) and qualitative (fractional composition using Multi-Heating Rates method) technique. Results of Rock-Eval analysis of 13 samples of concrete and 2 samples of gravel taken from the different sites of the petrol station indicate the highest concentration of light hydrocarbons (gasoline and naphtha fractions), up to over 5% wt. in the direct proximity of petrol pumps. Similarly high contamination (almost 4%wt.), was found near fuel tanks. Here the highest contribution has lubricating oil fraction and the tankers providing fuels are probably the source of this pollution. In the gravel collected in the vicinity of the fuel tanks high concentration (over 5 wt.%) of non-pyrolyzable carbon (soot) was recorded, the source of which are probably diesel engines of fuel tankers supplying fuel.
In this work the studies on the antioxidative properties of extracts from various morphotic parts of the ground elder (leaves, rhizomes, seeds and flowers) were presented. Moreover, the effect of different extraction methods (ultrasonic assisted extractions, extraction in a Soxhlet apparatus, extraction at the boiling point of the solvent used), solvent and its amount, and extraction time on the antioxidative properties of the obtained extracts were tested. The studies showed that all parts of ground elder can show radical scavenging activity, and it depends mainly on the method of extraction and extraction time. But the most beneficial is ultrasonic assisted extraction which used lower amount of solvent (ethanol). In case of all parts of the ground elder (leaves, rhizomes, seeds and flowers) it allows to obtain very high values of the antioxidant capacity (above 90%) for very short extraction time amounted to 20–40 minutes.
A series of thiazole derivatives were synthesized and structurally elucidated by IR, 1H NMR, 13C NMR, mass and elemental analyses. The prepared compounds were screened for their cytotoxic activity against Leukemia HL-60 cell line. Compound 4b was considered as the most promising antitumor candidate among the tested compounds. Mechanism of action of compound 4b evaluated by flow cytometric assay revealed cell cycle arrest at G2/M phase and pre-G1 apoptosis. The ratio of apoptosis was also determined. Moreover, compound 4b increased the concentration of caspase 3 by 4 fold more than untreated control.
Five divalent transition metals Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes have been synthesized using 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid (H3L) Schiff base as a ligand derived from the condensation reaction between 4-amino-3-hydroxynaphthalene-1-sulfonic acid and 2-hydroxy-1-naphthalde-hyde. The synthesized complexes were characterized using microanalytical, conductivity, FTIR, electronic, magnetic, ESR, thermal, and SEM studies. The microanalytical values revealed that the metal-to-ligand stoichiometry is 1:1 with molecular formula [M2+(NaL)(H2O)x].nH2O (where x = 3 for all metal ions except of Zn(II) equal x = 1; n = 4, 10, 7, 4, and 6 for Cu(II), Co(II), Ni(II), Mn(II) and Zn(II), respectively). The molar conductivity result indicates that all these complexes are neutral in nature with non-electrolytic behavior. Dependently on the magnetic, electronic, and ESR spectral data, octahedral geometry is proposed for all the complexes except to zinc(II) complex is tetrahedral. Thermal assignments of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. SEM micrographs of the synthesized complexes have a different surface morphologies. The antimicrobial activity data show that metal complexes are more potent than the parent ligand.
Herein, a simple and effective method for the preparation of thiourea using a nucleophilic substitution reaction is reported. Urea and Lawesson’s reagent were used as the raw materials to prepare thiourea via a one-step method involving the sulfuration reaction, and the reaction mechanism was analyzed. The effect of the reaction time, reaction temperature, and mass ratio of the raw materials on the yield of thiourea were investigated.The most beneficial conditions used for the reaction were determined to be: Reaction time = 3.5 h, reaction temperature = 75°C, and mass ratio of urea to Lawesson’s reagent = 2:1. Under these optimal conditions, the average yield of thiourea over five replicate experiments was 62.37%. Characterization using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) showed that the as-synthesized substance was thiourea. Our synthetic method has the advantages of high yield, mild reaction conditions and simplicity.
Pericarps of Algerian Quercus ilex (Q. ilex) and Quercus suber (Q. suber) were used as copper adsorbents in artificially contaminated solutions. Exposing accessible lignocellulosic binding sites enhanced adsorption. The lignocellulosic fractions of Q. suber and Q. ilex (36.47±9.1 and 47.66±9.3, respectively) were characterized by FTIR before and after adsorption. The aim was to identify the functional groups adsorbing Cu(II). SEM/EDX determined lignocellulose surface morphology and composition. The amount of adsorbent-bound Cu(II) increased with initial [Cu(II)]. Cu(II) adsorption range was 23.59–48.06 mg.g−1 for Q. Suber and 22.56–38.19 mg.g−1 for Q. ilex when [Cu(II)] was 100–500 mg.L−1. Adsorption isotherms and Langmuir and Freundlich models of the Q. suber and Q. ilex lignocellulosic fractions indicated natural Cu(II)adsorption capacities (Qmax) of 53.76 mg.g−1 and 36.06 mg.g−1 and KF of 5.9 mg.g−1 and 7.43 mg.g−1, respectively.
In the presented article, oxide forms of iron catalysts with the wustite structure and with a R = Fe2+/Fe3+ molar ratio in the range from 3.78 to 8.16 were investigated. The chemical composition of the tested catalyst precursors was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The X-ray diffraction (XRD) technique was used to determine the phase composition and location of reflections characteristic of the Fe1−xO phase. The molar ratio of iron ions R = Fe2+/Fe3+ was determined by manganometric titration. The distribution of promoters in the structure of iron catalyst precursors with different R = Fe2+/Fe3+ ratio was determined by a selective etching method. The dependence of the lattice parameter ao value in the crystal structure Fe1−xO on the molar ratio R = Fe2+/Fe3+ was determined. On the basis of the determined dependence, R can easily be calculated in catalyst precursors of the wustite structure.
Enzymatic preparation from culture of keratinolytic Bacillus cereus PCM 2849 was applied for hydrolysis of whole chicken feathers, after sulphitolytic pretreatment. This process was optimized using a three-factor Box-Behnken design, where the effect of substrate concentration, sulphite concentration during pretreatment and reaction temperature was evaluated on the release of amino acids. Obtained results revealed the highest impact of reaction temperature, followed by substrate content and sulphite during pretreatment. Optimal process conditions were established, i.e. temperature 44.4°C, feathers 4.7% and treatment with 25.3 mM sulphite. Amino acid composition of the obtained hydrolysate was analyzed. Glutamic acid (9.21 g·kg−1) and proline were dominant, however significant amount of branched-chain amino acids was also observed. The FTIR analysis of residual substrate revealed the cleavage of disulphide bonds in keratin through the presence of thioester residues. The absence of reduced cysteine residues was confirmed, along with minor changes in proportions of keratin substructures.
The iron diet supplements: AproFER 1000 and AproTHEM were subjected to various chemical, microbial and magnetic analysis. The microbial analysis revealed no presence of pathogenic bacteria in the studied products. No significant changes in iron content or forms (bivalent/trivalent) were observed in EPR analysis of supplements stored at different conditions for a long period of time. The chemical and magnetic analysis showed that both AproFER 1000 and AproTHEM contain a high concentration of bivalent iron so they can be used as an iron diet supplements.
Biodiesel is a promising energy substitute of fossil fuels since it is produced from renewable and biodegradable sources. In the present work, reactive distillation (RD) process is designed and simulated using Aspen Plus process simulator to produce biodiesel of high purity through esterification reaction. The simultaneous reaction and separation in same unit enhances the biodiesel yield and composition in RD process. Two flowsheets are proposed in present work. In the first flowsheet, the unreacted methanol is recycled back to reactive distillation column. Biodiesel with 99.5 mol% purity is obtained in product stream while the byproduct stream comprises 95.2 mol% water, which has to be treated further. In the second flowsheet, a part of methanol recycle is split and purged. In this case, the biodiesel composition in product stream is 99.7 mol% whereas water composition is 99.9 mol% in byproduct stream, which can be reused for other process without treatment.
The exploration and utilization of petroleum are potential hazards to the environment. Successful determination of petroleum contamination in ground relies on accurate definition of the type, source and quantity of contaminant. For this purpose the Rock-Eval® pyrolysis was applied, which is a rapid quantitative (Bulk Rock method) and qualitative (fractional composition using Multi-Heating Rates method) technique. Results of Rock-Eval analysis of 13 samples of concrete and 2 samples of gravel taken from the different sites of the petrol station indicate the highest concentration of light hydrocarbons (gasoline and naphtha fractions), up to over 5% wt. in the direct proximity of petrol pumps. Similarly high contamination (almost 4%wt.), was found near fuel tanks. Here the highest contribution has lubricating oil fraction and the tankers providing fuels are probably the source of this pollution. In the gravel collected in the vicinity of the fuel tanks high concentration (over 5 wt.%) of non-pyrolyzable carbon (soot) was recorded, the source of which are probably diesel engines of fuel tankers supplying fuel.
In this work the studies on the antioxidative properties of extracts from various morphotic parts of the ground elder (leaves, rhizomes, seeds and flowers) were presented. Moreover, the effect of different extraction methods (ultrasonic assisted extractions, extraction in a Soxhlet apparatus, extraction at the boiling point of the solvent used), solvent and its amount, and extraction time on the antioxidative properties of the obtained extracts were tested. The studies showed that all parts of ground elder can show radical scavenging activity, and it depends mainly on the method of extraction and extraction time. But the most beneficial is ultrasonic assisted extraction which used lower amount of solvent (ethanol). In case of all parts of the ground elder (leaves, rhizomes, seeds and flowers) it allows to obtain very high values of the antioxidant capacity (above 90%) for very short extraction time amounted to 20–40 minutes.
A series of thiazole derivatives were synthesized and structurally elucidated by IR, 1H NMR, 13C NMR, mass and elemental analyses. The prepared compounds were screened for their cytotoxic activity against Leukemia HL-60 cell line. Compound 4b was considered as the most promising antitumor candidate among the tested compounds. Mechanism of action of compound 4b evaluated by flow cytometric assay revealed cell cycle arrest at G2/M phase and pre-G1 apoptosis. The ratio of apoptosis was also determined. Moreover, compound 4b increased the concentration of caspase 3 by 4 fold more than untreated control.
Five divalent transition metals Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes have been synthesized using 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid (H3L) Schiff base as a ligand derived from the condensation reaction between 4-amino-3-hydroxynaphthalene-1-sulfonic acid and 2-hydroxy-1-naphthalde-hyde. The synthesized complexes were characterized using microanalytical, conductivity, FTIR, electronic, magnetic, ESR, thermal, and SEM studies. The microanalytical values revealed that the metal-to-ligand stoichiometry is 1:1 with molecular formula [M2+(NaL)(H2O)x].nH2O (where x = 3 for all metal ions except of Zn(II) equal x = 1; n = 4, 10, 7, 4, and 6 for Cu(II), Co(II), Ni(II), Mn(II) and Zn(II), respectively). The molar conductivity result indicates that all these complexes are neutral in nature with non-electrolytic behavior. Dependently on the magnetic, electronic, and ESR spectral data, octahedral geometry is proposed for all the complexes except to zinc(II) complex is tetrahedral. Thermal assignments of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. SEM micrographs of the synthesized complexes have a different surface morphologies. The antimicrobial activity data show that metal complexes are more potent than the parent ligand.
Herein, a simple and effective method for the preparation of thiourea using a nucleophilic substitution reaction is reported. Urea and Lawesson’s reagent were used as the raw materials to prepare thiourea via a one-step method involving the sulfuration reaction, and the reaction mechanism was analyzed. The effect of the reaction time, reaction temperature, and mass ratio of the raw materials on the yield of thiourea were investigated.The most beneficial conditions used for the reaction were determined to be: Reaction time = 3.5 h, reaction temperature = 75°C, and mass ratio of urea to Lawesson’s reagent = 2:1. Under these optimal conditions, the average yield of thiourea over five replicate experiments was 62.37%. Characterization using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) showed that the as-synthesized substance was thiourea. Our synthetic method has the advantages of high yield, mild reaction conditions and simplicity.
Pericarps of Algerian Quercus ilex (Q. ilex) and Quercus suber (Q. suber) were used as copper adsorbents in artificially contaminated solutions. Exposing accessible lignocellulosic binding sites enhanced adsorption. The lignocellulosic fractions of Q. suber and Q. ilex (36.47±9.1 and 47.66±9.3, respectively) were characterized by FTIR before and after adsorption. The aim was to identify the functional groups adsorbing Cu(II). SEM/EDX determined lignocellulose surface morphology and composition. The amount of adsorbent-bound Cu(II) increased with initial [Cu(II)]. Cu(II) adsorption range was 23.59–48.06 mg.g−1 for Q. Suber and 22.56–38.19 mg.g−1 for Q. ilex when [Cu(II)] was 100–500 mg.L−1. Adsorption isotherms and Langmuir and Freundlich models of the Q. suber and Q. ilex lignocellulosic fractions indicated natural Cu(II)adsorption capacities (Qmax) of 53.76 mg.g−1 and 36.06 mg.g−1 and KF of 5.9 mg.g−1 and 7.43 mg.g−1, respectively.
In the presented article, oxide forms of iron catalysts with the wustite structure and with a R = Fe2+/Fe3+ molar ratio in the range from 3.78 to 8.16 were investigated. The chemical composition of the tested catalyst precursors was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The X-ray diffraction (XRD) technique was used to determine the phase composition and location of reflections characteristic of the Fe1−xO phase. The molar ratio of iron ions R = Fe2+/Fe3+ was determined by manganometric titration. The distribution of promoters in the structure of iron catalyst precursors with different R = Fe2+/Fe3+ ratio was determined by a selective etching method. The dependence of the lattice parameter ao value in the crystal structure Fe1−xO on the molar ratio R = Fe2+/Fe3+ was determined. On the basis of the determined dependence, R can easily be calculated in catalyst precursors of the wustite structure.
Enzymatic preparation from culture of keratinolytic Bacillus cereus PCM 2849 was applied for hydrolysis of whole chicken feathers, after sulphitolytic pretreatment. This process was optimized using a three-factor Box-Behnken design, where the effect of substrate concentration, sulphite concentration during pretreatment and reaction temperature was evaluated on the release of amino acids. Obtained results revealed the highest impact of reaction temperature, followed by substrate content and sulphite during pretreatment. Optimal process conditions were established, i.e. temperature 44.4°C, feathers 4.7% and treatment with 25.3 mM sulphite. Amino acid composition of the obtained hydrolysate was analyzed. Glutamic acid (9.21 g·kg−1) and proline were dominant, however significant amount of branched-chain amino acids was also observed. The FTIR analysis of residual substrate revealed the cleavage of disulphide bonds in keratin through the presence of thioester residues. The absence of reduced cysteine residues was confirmed, along with minor changes in proportions of keratin substructures.
The iron diet supplements: AproFER 1000 and AproTHEM were subjected to various chemical, microbial and magnetic analysis. The microbial analysis revealed no presence of pathogenic bacteria in the studied products. No significant changes in iron content or forms (bivalent/trivalent) were observed in EPR analysis of supplements stored at different conditions for a long period of time. The chemical and magnetic analysis showed that both AproFER 1000 and AproTHEM contain a high concentration of bivalent iron so they can be used as an iron diet supplements.