Issues

Journal & Issues

Volume 22 (2022): Issue 2 (June 2022)

Volume 22 (2022): Issue 1 (March 2022)

Volume 21 (2021): Issue 4 (December 2021)

Volume 21 (2021): Issue 3 (September 2021)

Volume 21 (2021): Issue 2 (June 2021)

Volume 21 (2021): Issue 1 (March 2021)

Volume 20 (2020): Issue 4 (December 2020)

Volume 20 (2020): Issue 3 (September 2020)

Volume 20 (2020): Issue 2 (June 2020)

Volume 20 (2020): Issue 1 (March 2020)

Volume 19 (2019): Issue 4 (December 2019)

Volume 19 (2019): Issue 3 (September 2019)

Volume 19 (2019): Issue 2 (June 2019)

Volume 19 (2019): Issue 1 (March 2019)

Volume 18 (2018): Issue 4 (December 2018)

Volume 18 (2018): Issue 3 (September 2018)

Volume 18 (2018): Issue 2 (June 2018)

Volume 18 (2018): Issue 1 (March 2018)

Volume 17 (2017): Issue 4 (December 2017)

Volume 17 (2017): Issue 3 (September 2017)

Volume 17 (2017): Issue 2 (June 2017)

Volume 17 (2017): Issue 1 (March 2017)

Volume 16 (2016): Issue 4 (December 2016)

Volume 16 (2016): Issue 3 (September 2016)

Volume 16 (2016): Issue 2 (June 2016)

Volume 16 (2016): Issue 1 (March 2016)

Volume 15 (2015): Issue 4 (December 2015)

Volume 15 (2015): Issue 3 (September 2015)

Volume 15 (2015): Issue 2 (June 2015)

Volume 15 (2015): Issue 1 (March 2015)

Volume 14 (2014): Issue 4 (December 2014)

Volume 14 (2014): Issue 3 (September 2014)

Volume 14 (2014): Issue 2 (June 2014)

Volume 14 (2014): Issue 1 (March 2014)

Volume 13 (2013): Issue 4 (December 2013)

Volume 13 (2013): Issue 3 (September 2013)

Volume 13 (2013): Issue 2 (June 2013)

Volume 13 (2013): Issue 1 (March 2013)

Volume 12 (2012): Issue 4 (December 2012)

Volume 12 (2012): Issue 3 (October 2012)

Volume 12 (2012): Issue 2 (June 2012)

Volume 12 (2012): Issue 1 (March 2012)

Volume 11 (2011): Issue 4 (December 2011)

Volume 11 (2011): Issue 3 (September 2011)

Volume 11 (2011): Issue 2 (June 2011)

Volume 11 (2011): Issue 1 (March 2011)

Volume 10 (2010): Issue 4 (December 2010)

Volume 10 (2010): Issue 3 (September 2010)

Volume 10 (2010): Issue 2 (June 2010)

Volume 10 (2010): Issue 1 (March 2010)

Volume 9 (2009): Issue 4 (December 2009)

Volume 9 (2009): Issue 3 (September 2009)

Volume 9 (2009): Issue 2 (June 2009)

Volume 9 (2009): Issue 1 (March 2009)

Volume 8 (2008): Issue 4 (December 2008)

Volume 8 (2008): Issue 3 (September 2008)

Volume 8 (2008): Issue 2 (June 2008)

Volume 8 (2008): Issue 1 (March 2008)

Journal Details
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 21 (2021): Issue 4 (December 2021)

Journal Details
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

Search

9 Articles
Open Access

Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings

Published Online: 30 Dec 2021
Page range: 5 - 18

Abstract

Abstract

Laser surface modification of titanium alloys is one of the main methods of improving the properties of titanium alloys used in implantology. This study investigates the microstructural morphology of a laser-modified surface layer on a Ti13Nb13Zr alloy with and without a carbon nanotube coating deposited by electrophoretic deposition. Laser modification was performed for samples with and without carbon nanotube coating for two different laser powers of 800 W and 900 W and for different scan rates: 3 mm/s or 6 mm/s at 25 Hz, and the pulse duration was 2.25 ms or 3.25 ms. A scanning electron microscope SEM was used to evaluate the surface structure of the modified samples. To observe the heat-affected zones of the individual samples, metallographic samples were taken and observed under an optical microscope. Surface wettability tests were performed using a goniometer. A surface roughness test using a profilograph and a nanoindentation test by NanoTest™ Vantage was also performed. Observations of the microstructure allowed to state that for higher laser powers the surfaces of the samples are more homogeneous without defects, while for lower laser powers the path of the laser beam is clearer and more regular. Examination of the microstructure of the cross-sections indicated that the samples on which the carbon nanotube coating was deposited are characterized by a wider heat affected zone, and for the samples modified at 800 W and a feed rate of 3 mm/s the widest heat affected zone is observed. The wettability tests revealed that all the samples exhibit hydrophilic surfaces and the samples with deposited carbon nanotube coating increase it further. Surface roughness testing showed a significant increase in Ra for the laser-modified samples, and the presence of carbon nanotubes further increased this value. Nanoindentation studies showed that the laser modification and the presence of carbon coating improved the mechanical properties of the samples due to their strength.

Keywords

  • Ti13Nb13Zr alloy
  • laser alloying
  • carbon nanotubes
  • contact angle
  • nanoindentation
Open Access

Microstructural Evaluation of the High-Frequency Induction Welded Joints of Low Carbon Steel Pipes

Published Online: 30 Dec 2021
Page range: 19 - 33

Abstract

Abstract

The work presents the results of research on the structure of welded joints in the area of heat affected zone (HAZ). Based on precisely performed metallographic tests, the contribution of individual structural components in the area of welds of pipes welded with the induction method was assessed. The volume fraction of individual structural components in various areas of the heat affected zone, the size of the grain formed in the welding process, as well as its shape coefficients were determined. On the basis of metallographic observations, an attempt was made to describe the course of the pressure induction welding process, taking into account the structural changes, phase changes and the recovering and recrystallization processes taking place in this process.

Keywords

  • welding joints
  • heat affected zone
  • structure changes
  • recovering
  • recrystallization
Open Access

Preparation and Evaluation of Conductive Polymeric Composite from Metals Alloys and Graphene to Be Future Flexible Antenna Device

Published Online: 30 Dec 2021
Page range: 34 - 52

Abstract

Abstract

Every year hundreds of serious accidents and catastrophic are accompanied by mining sector services as disaster, flooding, and demolition. To reduce the severity of the results such as high death numbers, lost communication inner and out mining, we have to find an easy way to improve communication means during that problems. In this paper, we reach out to fabricate durable, flexible, and wearable chaps, in addition to an easier carrier with highly efficient receiving and sending a signal at 2.4 GHz broad wide band. By doping a bunch of unique conductive metals (silver, copper, and gallium indium alloy) assembled on Graphene, its integration inside Polydimethylsiloxane to be future applicable antenna. Furthermore, we studied the physical and electric properties of a composite including Electrochemical Impedance properties (EIS), cyclic voltammetry (CV), and its thermal stability chip (DSC), as well as, using Transmission electron microscopy (TEM), and, scanning electron microscopy (SEM) techniques to clarify the surface morphology of fabricated materials. In addition to various measurements had been carried out such as Ultraviolet-visible, inductively coupled plasma (ICP) spectroscopy, and Energy-dispersive X-ray spectroscopy (EDX) to reinforce and elucidate the solid-state of ions inside fabricated Antenna. On the other hand, throughout stress-strain for the stretchability of fabricated is expanded to 30% of its original length, in addition to thermal stability reached to 485°C compared to pure PDMS substrate, with enhancing electric conductivity of composite ship.

Keywords

  • PDMS
  • graphene
  • metals nanoparticles
  • characterization
  • flexible antenna
Open Access

Physico-Mechanical and Thermal Properties of Thermoplastic Poly(Vinyl Alcohol) Modified Thermosetting Urea Formaldehyde Resin

Published Online: 30 Dec 2021
Page range: 53 - 66

Abstract

Abstract

Urea formaldehyde (UF) resins are brittle and to improve their tensile properties poly(vinyl alcohol) (PVA) has been used to modify the UF resin. An easy improved procedure was developed to make PVA modified UF resin on the basis of conventional synthesis of UF resin. Prepolymer of UF was mixed with different weight percentages of PVA (1-5%) to synthesize modified UF resin which can be used to make adhesive for forest products. Both UF and modified UF resins were characterized by FTIR, physico-mechanical and thermal properties analyses. Modified UF resin containing 2 wt. % PVA exhibited better results than the UF.

Keywords

  • Modified urea formaldehyde resin
  • polyvinyl alcohol
  • thermal and tensile properties
Open Access

Assessment of Corrosive Behaviour and Microstructure Characterization of Hybrid Friction Stir Welded Martensitic Stainless Steel

Published Online: 30 Dec 2021
Page range: 67 - 78

Abstract

Abstract

This study examined the effect of induction heating on the microstructure and corrosion characteristics of hybrid friction stir welded AISI 410 stainless steel. Five joints have been produced with different friction stir welding parameters like welding speed, spindle speed, plunge depth, and induction power. Their microstructures were evaluated using a scanning electron microscope, and chemical composition was examined using energy-dispersive X-ray spectroscopy (EDX). The rate of corrosion was found out via the weight loss method in a 1 M HCL solution. The hybrid friction stir welding method used for this work is induction assisted friction stir welding; the results show that this method could produce sound AISI 410 stainless steel Joints. The experiment results show that the joint made at a spindle speed of 1150 rpm, welding speed 40 mm/min, plunge depth 0.5 mm, and in-situ heat by induction 480°C show a better corrosion resistance property with a fine grain structure.

Keywords

  • hybrid welding
  • induction heating
  • stainless steel
  • friction stir welding
  • corrosion
  • microstructure
Open Access

Effect of Fe-Ni Substitution in FeNiSiB Soft Magnetic Alloys Produced by Melt Spinning

Published Online: 30 Dec 2021
Page range: 79 - 89

Abstract

Abstract

Alloys of FeNiSiB soft magnetic materials containing variable Fe and Ni contents (wt.%) have been produced by melt spinning method, a kind of rapid solidification technique. The magnetic and structural properties of FeNiSiB alloys with soft magnetic properties were investigated by increasing the Fe ratio. X-ray diffraction analysis and SEM images shows that the produced alloy ribbons generally have an amorphous structure, together with also partially nanocrystalline regions. It was observed that the structure became much more amorphous together with increasing Fe content in the composition. Among the alloy ribbons, the highest saturation magnetization was obtained as 0.6 emu/g in the specimen with 50 wt.% Fe. In addition, the highest Curie temperature was observed in the sample containing 46 wt.% Fe.

Keywords

  • Alloy design
  • Curie temperature
  • FeNiSiB alloys
  • melt spinning
  • saturation magnetization
Open Access

Microstructural Characterization of Borided Co-Cr-Mo Alloy

Published Online: 30 Dec 2021
Page range: 90 - 98

Abstract

Abstract

This study involves the effect of boriding powder composition on the microstructure and hardness of a CoCrMo alloy borided in a solid medium using the powder pack method. To investigate the effect of boriding powder composition, two different commercial boriding agents, Ekabor-HM and Ekabor III, were thoroughly mixed with ferrosilicon powders to form the boriding media. The CoCrMo samples were tightly packed with the Ekabor-HM and Ekabor III boriding powders in stainless steel containers to minimize oxidation. The boriding process was carried out under atmospheric conditions for 9 h in an electrical resistance furnace preheated to 1223 K. X-ray diffraction (XRD) analyses revealed that the surfaces of the borided CoCrMo alloys consisted of a bilayer composed of CoB and Co2B phases and also contained minor amounts of CrB, Mo2B5, and Mo2B. The average thickness of the boride layer in the samples borided with Ekabor HM and Ekabor III powders was 28±4.1 μm and 21±2.3 μm, while the average hardness of the boride layer was 1752±5.3 HV0.1 and 1364±3.8 HV0.1, respectively.

Keywords

  • Co-Cr-Mo alloy
  • boriding
  • coating
  • boride layer
  • hardness
Open Access

The Effect of Spray Distance on Porosity, Surface Roughness and Microhardness of WC-10Co-4Cr Coatings Deposited by HVOF

Published Online: 30 Dec 2021
Page range: 99 - 111

Abstract

Abstract

The paper presents the computational studies on the microstructure of WC-Co-Cr coatings deposited by High Velocity Oxy Fuel spraying (HVOF). The study covers the porosity assessment according to ASTM E2109-01 standard, carried out in ImageJ software, in terms of volume porosity, size and shape of the pores. The evaluation was preceded by scanning electron microscope (SEM) observations at magnifications of 2000x and 5000x. Additionally, topography analysis has been performed by confocal laser scanning microscope (CLSM), and the surface roughness Ra was evaluated by the contact method with use of a stylus profilometer. Finally, the influence of porosity was observed for coatings microhardness HV0.3. According to the results, the total closed porosity was found to be in the range of 5.01 vol.% and 5.38 vol.%. The dominated pores in the coatings were of size 0.1-1.0 μm. Studies showed that HVOF process enabled deposition of dense coatings, characterized by homogenous distribution of pores and low roughness.

Keywords

  • cermet coatings
  • High Velocity Oxy Fuel Spraying
  • porosity
  • computational image analysis
Open Access

Effect of Holes in Overlap on the Load Capacity of the Single-Lap Adhesive Joints Made of EN AW-2024-T3 Aluminium Alloy

Published Online: 30 Dec 2021
Page range: 112 - 121

Abstract

Abstract

The paper presents the results of experimental research aimed at determining the possibilities of strengthening structural adhesive joints. Techniques to improve the strength of adhesive joints was to make holes in the front part of the adherends in order to make the joint locally more flexible in the area of stress concentration at the joint edges. The tests were carried out for the lap joints of EN AW-2024-T3 aluminum alloy sheets, which were bonded with Loctite EA3430 epoxy adhesive. Static tests were carried out on the basis of the tensile/shear test. It has been shown that the applied structural modifications allow for an increase in the strength of the joint, in the best variant, an increase in strength of 14.5% was obtained. In addition, it has been shown that making holes in the adherends allows to reduce the spread of strength results.

Keywords

  • Adhesive joints
  • epoxy adhesive
  • strength of adhesive joints
  • EN AW-2024-T3 aluminium alloy
9 Articles
Open Access

Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings

Published Online: 30 Dec 2021
Page range: 5 - 18

Abstract

Abstract

Laser surface modification of titanium alloys is one of the main methods of improving the properties of titanium alloys used in implantology. This study investigates the microstructural morphology of a laser-modified surface layer on a Ti13Nb13Zr alloy with and without a carbon nanotube coating deposited by electrophoretic deposition. Laser modification was performed for samples with and without carbon nanotube coating for two different laser powers of 800 W and 900 W and for different scan rates: 3 mm/s or 6 mm/s at 25 Hz, and the pulse duration was 2.25 ms or 3.25 ms. A scanning electron microscope SEM was used to evaluate the surface structure of the modified samples. To observe the heat-affected zones of the individual samples, metallographic samples were taken and observed under an optical microscope. Surface wettability tests were performed using a goniometer. A surface roughness test using a profilograph and a nanoindentation test by NanoTest™ Vantage was also performed. Observations of the microstructure allowed to state that for higher laser powers the surfaces of the samples are more homogeneous without defects, while for lower laser powers the path of the laser beam is clearer and more regular. Examination of the microstructure of the cross-sections indicated that the samples on which the carbon nanotube coating was deposited are characterized by a wider heat affected zone, and for the samples modified at 800 W and a feed rate of 3 mm/s the widest heat affected zone is observed. The wettability tests revealed that all the samples exhibit hydrophilic surfaces and the samples with deposited carbon nanotube coating increase it further. Surface roughness testing showed a significant increase in Ra for the laser-modified samples, and the presence of carbon nanotubes further increased this value. Nanoindentation studies showed that the laser modification and the presence of carbon coating improved the mechanical properties of the samples due to their strength.

Keywords

  • Ti13Nb13Zr alloy
  • laser alloying
  • carbon nanotubes
  • contact angle
  • nanoindentation
Open Access

Microstructural Evaluation of the High-Frequency Induction Welded Joints of Low Carbon Steel Pipes

Published Online: 30 Dec 2021
Page range: 19 - 33

Abstract

Abstract

The work presents the results of research on the structure of welded joints in the area of heat affected zone (HAZ). Based on precisely performed metallographic tests, the contribution of individual structural components in the area of welds of pipes welded with the induction method was assessed. The volume fraction of individual structural components in various areas of the heat affected zone, the size of the grain formed in the welding process, as well as its shape coefficients were determined. On the basis of metallographic observations, an attempt was made to describe the course of the pressure induction welding process, taking into account the structural changes, phase changes and the recovering and recrystallization processes taking place in this process.

Keywords

  • welding joints
  • heat affected zone
  • structure changes
  • recovering
  • recrystallization
Open Access

Preparation and Evaluation of Conductive Polymeric Composite from Metals Alloys and Graphene to Be Future Flexible Antenna Device

Published Online: 30 Dec 2021
Page range: 34 - 52

Abstract

Abstract

Every year hundreds of serious accidents and catastrophic are accompanied by mining sector services as disaster, flooding, and demolition. To reduce the severity of the results such as high death numbers, lost communication inner and out mining, we have to find an easy way to improve communication means during that problems. In this paper, we reach out to fabricate durable, flexible, and wearable chaps, in addition to an easier carrier with highly efficient receiving and sending a signal at 2.4 GHz broad wide band. By doping a bunch of unique conductive metals (silver, copper, and gallium indium alloy) assembled on Graphene, its integration inside Polydimethylsiloxane to be future applicable antenna. Furthermore, we studied the physical and electric properties of a composite including Electrochemical Impedance properties (EIS), cyclic voltammetry (CV), and its thermal stability chip (DSC), as well as, using Transmission electron microscopy (TEM), and, scanning electron microscopy (SEM) techniques to clarify the surface morphology of fabricated materials. In addition to various measurements had been carried out such as Ultraviolet-visible, inductively coupled plasma (ICP) spectroscopy, and Energy-dispersive X-ray spectroscopy (EDX) to reinforce and elucidate the solid-state of ions inside fabricated Antenna. On the other hand, throughout stress-strain for the stretchability of fabricated is expanded to 30% of its original length, in addition to thermal stability reached to 485°C compared to pure PDMS substrate, with enhancing electric conductivity of composite ship.

Keywords

  • PDMS
  • graphene
  • metals nanoparticles
  • characterization
  • flexible antenna
Open Access

Physico-Mechanical and Thermal Properties of Thermoplastic Poly(Vinyl Alcohol) Modified Thermosetting Urea Formaldehyde Resin

Published Online: 30 Dec 2021
Page range: 53 - 66

Abstract

Abstract

Urea formaldehyde (UF) resins are brittle and to improve their tensile properties poly(vinyl alcohol) (PVA) has been used to modify the UF resin. An easy improved procedure was developed to make PVA modified UF resin on the basis of conventional synthesis of UF resin. Prepolymer of UF was mixed with different weight percentages of PVA (1-5%) to synthesize modified UF resin which can be used to make adhesive for forest products. Both UF and modified UF resins were characterized by FTIR, physico-mechanical and thermal properties analyses. Modified UF resin containing 2 wt. % PVA exhibited better results than the UF.

Keywords

  • Modified urea formaldehyde resin
  • polyvinyl alcohol
  • thermal and tensile properties
Open Access

Assessment of Corrosive Behaviour and Microstructure Characterization of Hybrid Friction Stir Welded Martensitic Stainless Steel

Published Online: 30 Dec 2021
Page range: 67 - 78

Abstract

Abstract

This study examined the effect of induction heating on the microstructure and corrosion characteristics of hybrid friction stir welded AISI 410 stainless steel. Five joints have been produced with different friction stir welding parameters like welding speed, spindle speed, plunge depth, and induction power. Their microstructures were evaluated using a scanning electron microscope, and chemical composition was examined using energy-dispersive X-ray spectroscopy (EDX). The rate of corrosion was found out via the weight loss method in a 1 M HCL solution. The hybrid friction stir welding method used for this work is induction assisted friction stir welding; the results show that this method could produce sound AISI 410 stainless steel Joints. The experiment results show that the joint made at a spindle speed of 1150 rpm, welding speed 40 mm/min, plunge depth 0.5 mm, and in-situ heat by induction 480°C show a better corrosion resistance property with a fine grain structure.

Keywords

  • hybrid welding
  • induction heating
  • stainless steel
  • friction stir welding
  • corrosion
  • microstructure
Open Access

Effect of Fe-Ni Substitution in FeNiSiB Soft Magnetic Alloys Produced by Melt Spinning

Published Online: 30 Dec 2021
Page range: 79 - 89

Abstract

Abstract

Alloys of FeNiSiB soft magnetic materials containing variable Fe and Ni contents (wt.%) have been produced by melt spinning method, a kind of rapid solidification technique. The magnetic and structural properties of FeNiSiB alloys with soft magnetic properties were investigated by increasing the Fe ratio. X-ray diffraction analysis and SEM images shows that the produced alloy ribbons generally have an amorphous structure, together with also partially nanocrystalline regions. It was observed that the structure became much more amorphous together with increasing Fe content in the composition. Among the alloy ribbons, the highest saturation magnetization was obtained as 0.6 emu/g in the specimen with 50 wt.% Fe. In addition, the highest Curie temperature was observed in the sample containing 46 wt.% Fe.

Keywords

  • Alloy design
  • Curie temperature
  • FeNiSiB alloys
  • melt spinning
  • saturation magnetization
Open Access

Microstructural Characterization of Borided Co-Cr-Mo Alloy

Published Online: 30 Dec 2021
Page range: 90 - 98

Abstract

Abstract

This study involves the effect of boriding powder composition on the microstructure and hardness of a CoCrMo alloy borided in a solid medium using the powder pack method. To investigate the effect of boriding powder composition, two different commercial boriding agents, Ekabor-HM and Ekabor III, were thoroughly mixed with ferrosilicon powders to form the boriding media. The CoCrMo samples were tightly packed with the Ekabor-HM and Ekabor III boriding powders in stainless steel containers to minimize oxidation. The boriding process was carried out under atmospheric conditions for 9 h in an electrical resistance furnace preheated to 1223 K. X-ray diffraction (XRD) analyses revealed that the surfaces of the borided CoCrMo alloys consisted of a bilayer composed of CoB and Co2B phases and also contained minor amounts of CrB, Mo2B5, and Mo2B. The average thickness of the boride layer in the samples borided with Ekabor HM and Ekabor III powders was 28±4.1 μm and 21±2.3 μm, while the average hardness of the boride layer was 1752±5.3 HV0.1 and 1364±3.8 HV0.1, respectively.

Keywords

  • Co-Cr-Mo alloy
  • boriding
  • coating
  • boride layer
  • hardness
Open Access

The Effect of Spray Distance on Porosity, Surface Roughness and Microhardness of WC-10Co-4Cr Coatings Deposited by HVOF

Published Online: 30 Dec 2021
Page range: 99 - 111

Abstract

Abstract

The paper presents the computational studies on the microstructure of WC-Co-Cr coatings deposited by High Velocity Oxy Fuel spraying (HVOF). The study covers the porosity assessment according to ASTM E2109-01 standard, carried out in ImageJ software, in terms of volume porosity, size and shape of the pores. The evaluation was preceded by scanning electron microscope (SEM) observations at magnifications of 2000x and 5000x. Additionally, topography analysis has been performed by confocal laser scanning microscope (CLSM), and the surface roughness Ra was evaluated by the contact method with use of a stylus profilometer. Finally, the influence of porosity was observed for coatings microhardness HV0.3. According to the results, the total closed porosity was found to be in the range of 5.01 vol.% and 5.38 vol.%. The dominated pores in the coatings were of size 0.1-1.0 μm. Studies showed that HVOF process enabled deposition of dense coatings, characterized by homogenous distribution of pores and low roughness.

Keywords

  • cermet coatings
  • High Velocity Oxy Fuel Spraying
  • porosity
  • computational image analysis
Open Access

Effect of Holes in Overlap on the Load Capacity of the Single-Lap Adhesive Joints Made of EN AW-2024-T3 Aluminium Alloy

Published Online: 30 Dec 2021
Page range: 112 - 121

Abstract

Abstract

The paper presents the results of experimental research aimed at determining the possibilities of strengthening structural adhesive joints. Techniques to improve the strength of adhesive joints was to make holes in the front part of the adherends in order to make the joint locally more flexible in the area of stress concentration at the joint edges. The tests were carried out for the lap joints of EN AW-2024-T3 aluminum alloy sheets, which were bonded with Loctite EA3430 epoxy adhesive. Static tests were carried out on the basis of the tensile/shear test. It has been shown that the applied structural modifications allow for an increase in the strength of the joint, in the best variant, an increase in strength of 14.5% was obtained. In addition, it has been shown that making holes in the adherends allows to reduce the spread of strength results.

Keywords

  • Adhesive joints
  • epoxy adhesive
  • strength of adhesive joints
  • EN AW-2024-T3 aluminium alloy

Plan your remote conference with Sciendo