Journal & Issues

Volume 23 (2023): Issue 1 (March 2023)

Volume 22 (2022): Issue 4 (December 2022)

Volume 22 (2022): Issue 3 (September 2022)

Volume 22 (2022): Issue 2 (June 2022)

Volume 22 (2022): Issue 1 (March 2022)

Volume 21 (2021): Issue 4 (December 2021)

Volume 21 (2021): Issue 3 (September 2021)

Volume 21 (2021): Issue 2 (June 2021)

Volume 21 (2021): Issue 1 (March 2021)

Volume 20 (2020): Issue 4 (December 2020)

Volume 20 (2020): Issue 3 (September 2020)

Volume 20 (2020): Issue 2 (June 2020)

Volume 20 (2020): Issue 1 (March 2020)

Volume 19 (2019): Issue 4 (December 2019)

Volume 19 (2019): Issue 3 (September 2019)

Volume 19 (2019): Issue 2 (June 2019)

Volume 19 (2019): Issue 1 (March 2019)

Volume 18 (2018): Issue 4 (December 2018)

Volume 18 (2018): Issue 3 (September 2018)

Volume 18 (2018): Issue 2 (June 2018)

Volume 18 (2018): Issue 1 (March 2018)

Volume 17 (2017): Issue 4 (December 2017)

Volume 17 (2017): Issue 3 (September 2017)

Volume 17 (2017): Issue 2 (June 2017)

Volume 17 (2017): Issue 1 (March 2017)

Volume 16 (2016): Issue 4 (December 2016)

Volume 16 (2016): Issue 3 (September 2016)

Volume 16 (2016): Issue 2 (June 2016)

Volume 16 (2016): Issue 1 (March 2016)

Volume 15 (2015): Issue 4 (December 2015)

Volume 15 (2015): Issue 3 (September 2015)

Volume 15 (2015): Issue 2 (June 2015)

Volume 15 (2015): Issue 1 (March 2015)

Volume 14 (2014): Issue 4 (December 2014)

Volume 14 (2014): Issue 3 (September 2014)

Volume 14 (2014): Issue 2 (June 2014)

Volume 14 (2014): Issue 1 (March 2014)

Volume 13 (2013): Issue 4 (December 2013)

Volume 13 (2013): Issue 3 (September 2013)

Volume 13 (2013): Issue 2 (June 2013)

Volume 13 (2013): Issue 1 (March 2013)

Volume 12 (2012): Issue 4 (December 2012)

Volume 12 (2012): Issue 3 (October 2012)

Volume 12 (2012): Issue 2 (June 2012)

Volume 12 (2012): Issue 1 (March 2012)

Volume 11 (2011): Issue 4 (December 2011)

Volume 11 (2011): Issue 3 (September 2011)

Volume 11 (2011): Issue 2 (June 2011)

Volume 11 (2011): Issue 1 (March 2011)

Volume 10 (2010): Issue 4 (December 2010)

Volume 10 (2010): Issue 3 (September 2010)

Volume 10 (2010): Issue 2 (June 2010)

Volume 10 (2010): Issue 1 (March 2010)

Volume 9 (2009): Issue 4 (December 2009)

Volume 9 (2009): Issue 3 (September 2009)

Volume 9 (2009): Issue 2 (June 2009)

Volume 9 (2009): Issue 1 (March 2009)

Volume 8 (2008): Issue 4 (December 2008)

Volume 8 (2008): Issue 3 (September 2008)

Volume 8 (2008): Issue 2 (June 2008)

Volume 8 (2008): Issue 1 (March 2008)

Journal Details
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 15 (2015): Issue 4 (December 2015)

Journal Details
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

Search

7 Articles
Open Access

Plastic Deformation and Softening of the Surface Layer of Railway Wheel

Published Online: 30 Dec 2015
Page range: 5 - 13

Abstract

Abstract

In this study scanning electron microscope (SEM) and optical micrograph observations were used to investigate the plastic deformation near the surface of the worn railway wheel following service. Microstructure, plastic deformation and micro-hardness of the material in the outermost tread layer of used passenger railway wheel were characterised. It was found that the material in the contact surface of wheel undergoes severe plastic deformation. Vickers micro-hardness measurements in the highly deformed layer could be correlated with softening of the outer wheel rim and the spheroidisation of the cementite phase. Examination of worn, railway wheel taken out of service, has indicated that cracks are predominantly initiated at the wheel surface down the edges of highly strained, pro-eutectoid ferrite zones (situated along prior austenite grain boundaries) and that such pro-eutectoid ferrite zones also facilitate crack propagation.

Keywords

  • monoblock railway wheels
  • plastic deformation
  • cementite spheroidisation
Open Access

Effect of Nanofiller Dispersion on Morphology, Mechanical and Conducting Properties of Electroactive Shape Memory Poly(Urethane-Urea)/Functional Nanodiamond Composite

Published Online: 30 Dec 2015
Page range: 14 - 28

Abstract

Abstract

In this attempt, segmented poly(urethane urea) was prepared from polycaprolactone triol (soft segment), 1,3- bis(isocyanatomethyl)cyclohexane (hard segment) and 4,5-diaminophthalonitrile (chain extender). Acidfunctionalized nano-diamond was used as nano-filler. The nanocomposites were processed using solution casting and melt blending. Unique morphology was observed by SEM due to generation of crosslinked polyurethane and ND network. The s-PUU/ND 10 depicted 6 % increase in tensile strength compared with m-PUU/ND 10. 10 wt. % ND loading via solution route increased conductivity to 0.089 Scm-1 relative to m-PUU/ND 10 (0.057 Scm-1). Electrical conductivity of nanocomposites was enough to show electroactive shape recovery of 95 % (40 V).

Keywords

  • Poly(urethane urea)
  • nanodiamond
  • electroactive shape recovery
Open Access

Estimation of Young’s Modulus of the Porous Titanium Alloy with the Use of Fem Package

Published Online: 30 Dec 2015
Page range: 29 - 37

Abstract

Abstract

Porous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs are scaffolds used in biomedical applications, like in orthopedics’ and mechanical properties of these structures should meet specific requirements. This paper shows how mechanical properties of proposed scaffolds can be estimated with regard to total porosity and pore shape.

Keywords

  • porous structures
  • Young’s modulus
  • Finite Element Method
  • titanium alloy
Open Access

Process Optimization Variables for Direct Metal Laser Sintering

Published Online: 30 Dec 2015
Page range: 38 - 51

Abstract

Abstract

Manufacturing is crucial to creation of wealth and provision of quality of life. Manufacturing covers numerous aspects from systems design and organization, technology and logistics, operational planning and control. The study of manufacturing technology is usually classified into conventional and non-conventional processes. As it is well known, the term "rapid prototyping" refers to a number of different but related technologies that can be used for building very complex physical models and prototype parts directly from 3D CAD model. Among these technologies are selective laser sintering (SLS) and direct metal laser sintering (DMLS). RP technologies can use wide range of materials which gives possibility for their application in different fields. RP has primary been developed for manufacturing industry in order to speed up the development of new products (prototypes, concept models, form, fit, and function testing, tooling patterns, final products - direct parts). Sintering is a term in the field of powder metallurgy and describes a process which takes place under a certain pressure and temperature over a period of time. During sintering particles of a powder material are bound together in a mold to a solid part. In selective laser sintering the crucial elements pressure and time are obsolete and the powder particles are only heated for a short period of time. SLS uses the fact that every physical system tends to achieve a condition of minimum energy. In the case of powder the partially melted particles aim to minimize their in comparison to a solid block of material enormous surface area through fusing their outer skins. Like all generative manufacturing processes laser sintering gains the geometrical information out of a 3D CAD model. This model is subdivided into slices or layers of a certain layer thickness. Following this is a revolving process which consists of three basic process steps: recoating, exposure, and lowering of the build platform until the part is finished completely.

Keywords

  • selective laser sintering
  • direct metal laser sintering
  • sintering parameters
  • optimization
Open Access

The Influence of the RF PACVD MS Process Parameters on the Physicochemical Properties of Hydroxyapatite Coatings

Published Online: 30 Dec 2015
Page range: 52 - 58

Abstract

Abstract

Hydroksyapatite (HAp) as the coating, is produced using different methods of deposition, among others: laser ablation method, sol-gel, electrophoresis, thermal sputtering or magnetron spraying with the usage of high frequency. Attempts to benefit from such a wide spectrum of existing methods are related to the fact that this material possesses many advantages. We have to distinguish, among others, proper biological properties, i.e. both - high bio-tolerance and high osteo-inductivity [1,2]. However, it is worth mentioning that the material also presents disadvantages, i.e. it indicates too quick resorption within the biological environment, depending on its obtained form. In case when HAp is in the amorphous form, it undergoes a very rapid process of dissolving in the tissue environment. [3] In order to prevent the above, it is important to produce the coatings with a regulative level of cristallinity. In the presented research the hydroxyapatite coating produced using RF PACVD MS plasma method (Radio Frequency Plasma Assisted Chemical Vapor Deposition Magnetron Sputtering) possesses the above mentioned amorphous form. Nevertheless, due to the usage of ‘bubbler’, allowing for delivery of hydroxyl groups into the operating chamber, it was possible to receive the Hap coatings in a crystalline form. Changing the operating pressure (the amount of bonds - OH), during sputtering, it was checked what is the influence of that parameter on the physicochemical properties of obtained coatings. Scanning electron microscopy (SEM) was used for the founding research as well as the Roentgen Apparatus Analyser (EDS). The Phase composition of a created coating was researched using the Roentgen diffract-meter (XRD). The measures of thickness were conducted using contact-profilometry. Nano-indentation technique was used to assess the mechanical properties. Obtained results of research encourage for further researches related to the influence of hydroxyl groups on the physicochemical properties of hydroxyapatat coatings.

Keywords

  • magnetron sputtering
  • hydroxyapatite
  • coating
  • radio frequency
  • water vapour
Open Access

The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids

Published Online: 30 Dec 2015
Page range: 59 - 66

Abstract

Abstract

In this study process fluids were tested after the addition of nanoparticles. Cooling and lubricating process fluids are used in machining to reduce wear on tools, to increase machine performance and to improve product quality. The use of process fluids leads to their pollution and contamination. Nanoparticles were added to the process fluids in order to increase their antibacterial activity. The selected nanoparticles were nanoparticles of metallic silver. The process fluids were modified by the addition of silver nitrate and ascorbic acid. Reduction of silver nanoparticles in the volume of the fluid was achieved using UV. The modified fluids were tested for their cytotoxicity and changes in chemical composition. The cytotoxicity of process fluids was tested for the purpose of verifying whether the process fluids, which are in direct contact with the skin of the operator, affect the health of the operator. The cytotoxicity of the process fluids was tested on human fibroblast cells. Fibroblasts are the basic cells of fibrous tissue. The cytotoxicity was tested by measuring the cell viability and using XTT. Analysis of chemical composition was performed for the purpose of determining the individual substances in the process fluids and their chemical stability. Qualitative analysis of the process fluids was performed using gas chromatography mass spectrometry (GC - MS).

Keywords

  • nanoparticles
  • silver
  • cytotoxicity
  • chemical composition
Open Access

Graphene as a Material for Solar Cells Applications

Published Online: 30 Dec 2015
Page range: 67 - 81

Abstract

Abstract

Graphene is a two-dimensional material with honeycomb structure. Its unique mechanical, physical electrical and optical properties makes it an important industrially and economically material in the coming years. One of the application areas for graphene is the photovoltaic industry. Studies have shown that doped graphene can change one absorbed photon of a few electrons, which in practice means an increase in efficiency of solar panels. In addition, graphene has a low coefficient of light absorption 2.3% which indicates that is an almost completely transparent material. In fact, it means that solar cells based on graphene can significantly expand the absorbed spectrum wavelengths of electromagnetic radiation. Graphene additionally is a material with a very high tensile strength so it can be successfully used on the silicon, flexible and organic substrates as well. So far, significant effort has been devoted to using graphene for improving the overall performance of photovoltaic devices. It has been reported that graphene can play diverse, but positive roles such as an electrode, an active layer, an interfacial layer and an electron acceptor in photovoltaic cells. Research on solar cells containing in its structure graphene however, are still at laboratory scale. This is due to both lack the ability to produce large-sized graphene and reproducibility of its parameters

Keywords

  • graphene
  • photovoltaic cells
  • transparent materials
  • graphene oxide
7 Articles
Open Access

Plastic Deformation and Softening of the Surface Layer of Railway Wheel

Published Online: 30 Dec 2015
Page range: 5 - 13

Abstract

Abstract

In this study scanning electron microscope (SEM) and optical micrograph observations were used to investigate the plastic deformation near the surface of the worn railway wheel following service. Microstructure, plastic deformation and micro-hardness of the material in the outermost tread layer of used passenger railway wheel were characterised. It was found that the material in the contact surface of wheel undergoes severe plastic deformation. Vickers micro-hardness measurements in the highly deformed layer could be correlated with softening of the outer wheel rim and the spheroidisation of the cementite phase. Examination of worn, railway wheel taken out of service, has indicated that cracks are predominantly initiated at the wheel surface down the edges of highly strained, pro-eutectoid ferrite zones (situated along prior austenite grain boundaries) and that such pro-eutectoid ferrite zones also facilitate crack propagation.

Keywords

  • monoblock railway wheels
  • plastic deformation
  • cementite spheroidisation
Open Access

Effect of Nanofiller Dispersion on Morphology, Mechanical and Conducting Properties of Electroactive Shape Memory Poly(Urethane-Urea)/Functional Nanodiamond Composite

Published Online: 30 Dec 2015
Page range: 14 - 28

Abstract

Abstract

In this attempt, segmented poly(urethane urea) was prepared from polycaprolactone triol (soft segment), 1,3- bis(isocyanatomethyl)cyclohexane (hard segment) and 4,5-diaminophthalonitrile (chain extender). Acidfunctionalized nano-diamond was used as nano-filler. The nanocomposites were processed using solution casting and melt blending. Unique morphology was observed by SEM due to generation of crosslinked polyurethane and ND network. The s-PUU/ND 10 depicted 6 % increase in tensile strength compared with m-PUU/ND 10. 10 wt. % ND loading via solution route increased conductivity to 0.089 Scm-1 relative to m-PUU/ND 10 (0.057 Scm-1). Electrical conductivity of nanocomposites was enough to show electroactive shape recovery of 95 % (40 V).

Keywords

  • Poly(urethane urea)
  • nanodiamond
  • electroactive shape recovery
Open Access

Estimation of Young’s Modulus of the Porous Titanium Alloy with the Use of Fem Package

Published Online: 30 Dec 2015
Page range: 29 - 37

Abstract

Abstract

Porous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs are scaffolds used in biomedical applications, like in orthopedics’ and mechanical properties of these structures should meet specific requirements. This paper shows how mechanical properties of proposed scaffolds can be estimated with regard to total porosity and pore shape.

Keywords

  • porous structures
  • Young’s modulus
  • Finite Element Method
  • titanium alloy
Open Access

Process Optimization Variables for Direct Metal Laser Sintering

Published Online: 30 Dec 2015
Page range: 38 - 51

Abstract

Abstract

Manufacturing is crucial to creation of wealth and provision of quality of life. Manufacturing covers numerous aspects from systems design and organization, technology and logistics, operational planning and control. The study of manufacturing technology is usually classified into conventional and non-conventional processes. As it is well known, the term "rapid prototyping" refers to a number of different but related technologies that can be used for building very complex physical models and prototype parts directly from 3D CAD model. Among these technologies are selective laser sintering (SLS) and direct metal laser sintering (DMLS). RP technologies can use wide range of materials which gives possibility for their application in different fields. RP has primary been developed for manufacturing industry in order to speed up the development of new products (prototypes, concept models, form, fit, and function testing, tooling patterns, final products - direct parts). Sintering is a term in the field of powder metallurgy and describes a process which takes place under a certain pressure and temperature over a period of time. During sintering particles of a powder material are bound together in a mold to a solid part. In selective laser sintering the crucial elements pressure and time are obsolete and the powder particles are only heated for a short period of time. SLS uses the fact that every physical system tends to achieve a condition of minimum energy. In the case of powder the partially melted particles aim to minimize their in comparison to a solid block of material enormous surface area through fusing their outer skins. Like all generative manufacturing processes laser sintering gains the geometrical information out of a 3D CAD model. This model is subdivided into slices or layers of a certain layer thickness. Following this is a revolving process which consists of three basic process steps: recoating, exposure, and lowering of the build platform until the part is finished completely.

Keywords

  • selective laser sintering
  • direct metal laser sintering
  • sintering parameters
  • optimization
Open Access

The Influence of the RF PACVD MS Process Parameters on the Physicochemical Properties of Hydroxyapatite Coatings

Published Online: 30 Dec 2015
Page range: 52 - 58

Abstract

Abstract

Hydroksyapatite (HAp) as the coating, is produced using different methods of deposition, among others: laser ablation method, sol-gel, electrophoresis, thermal sputtering or magnetron spraying with the usage of high frequency. Attempts to benefit from such a wide spectrum of existing methods are related to the fact that this material possesses many advantages. We have to distinguish, among others, proper biological properties, i.e. both - high bio-tolerance and high osteo-inductivity [1,2]. However, it is worth mentioning that the material also presents disadvantages, i.e. it indicates too quick resorption within the biological environment, depending on its obtained form. In case when HAp is in the amorphous form, it undergoes a very rapid process of dissolving in the tissue environment. [3] In order to prevent the above, it is important to produce the coatings with a regulative level of cristallinity. In the presented research the hydroxyapatite coating produced using RF PACVD MS plasma method (Radio Frequency Plasma Assisted Chemical Vapor Deposition Magnetron Sputtering) possesses the above mentioned amorphous form. Nevertheless, due to the usage of ‘bubbler’, allowing for delivery of hydroxyl groups into the operating chamber, it was possible to receive the Hap coatings in a crystalline form. Changing the operating pressure (the amount of bonds - OH), during sputtering, it was checked what is the influence of that parameter on the physicochemical properties of obtained coatings. Scanning electron microscopy (SEM) was used for the founding research as well as the Roentgen Apparatus Analyser (EDS). The Phase composition of a created coating was researched using the Roentgen diffract-meter (XRD). The measures of thickness were conducted using contact-profilometry. Nano-indentation technique was used to assess the mechanical properties. Obtained results of research encourage for further researches related to the influence of hydroxyl groups on the physicochemical properties of hydroxyapatat coatings.

Keywords

  • magnetron sputtering
  • hydroxyapatite
  • coating
  • radio frequency
  • water vapour
Open Access

The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids

Published Online: 30 Dec 2015
Page range: 59 - 66

Abstract

Abstract

In this study process fluids were tested after the addition of nanoparticles. Cooling and lubricating process fluids are used in machining to reduce wear on tools, to increase machine performance and to improve product quality. The use of process fluids leads to their pollution and contamination. Nanoparticles were added to the process fluids in order to increase their antibacterial activity. The selected nanoparticles were nanoparticles of metallic silver. The process fluids were modified by the addition of silver nitrate and ascorbic acid. Reduction of silver nanoparticles in the volume of the fluid was achieved using UV. The modified fluids were tested for their cytotoxicity and changes in chemical composition. The cytotoxicity of process fluids was tested for the purpose of verifying whether the process fluids, which are in direct contact with the skin of the operator, affect the health of the operator. The cytotoxicity of the process fluids was tested on human fibroblast cells. Fibroblasts are the basic cells of fibrous tissue. The cytotoxicity was tested by measuring the cell viability and using XTT. Analysis of chemical composition was performed for the purpose of determining the individual substances in the process fluids and their chemical stability. Qualitative analysis of the process fluids was performed using gas chromatography mass spectrometry (GC - MS).

Keywords

  • nanoparticles
  • silver
  • cytotoxicity
  • chemical composition
Open Access

Graphene as a Material for Solar Cells Applications

Published Online: 30 Dec 2015
Page range: 67 - 81

Abstract

Abstract

Graphene is a two-dimensional material with honeycomb structure. Its unique mechanical, physical electrical and optical properties makes it an important industrially and economically material in the coming years. One of the application areas for graphene is the photovoltaic industry. Studies have shown that doped graphene can change one absorbed photon of a few electrons, which in practice means an increase in efficiency of solar panels. In addition, graphene has a low coefficient of light absorption 2.3% which indicates that is an almost completely transparent material. In fact, it means that solar cells based on graphene can significantly expand the absorbed spectrum wavelengths of electromagnetic radiation. Graphene additionally is a material with a very high tensile strength so it can be successfully used on the silicon, flexible and organic substrates as well. So far, significant effort has been devoted to using graphene for improving the overall performance of photovoltaic devices. It has been reported that graphene can play diverse, but positive roles such as an electrode, an active layer, an interfacial layer and an electron acceptor in photovoltaic cells. Research on solar cells containing in its structure graphene however, are still at laboratory scale. This is due to both lack the ability to produce large-sized graphene and reproducibility of its parameters

Keywords

  • graphene
  • photovoltaic cells
  • transparent materials
  • graphene oxide